双连通图

如果任意两个顶点之间有两条顶点不相交的路径,则无向图称为双连通图。在双连通图中,任意两个顶点都有一个简单的循环。

null

按照惯例,由一条边连接的两个节点形成一个双连通图,但这并不验证上述属性。对于一个有两个以上顶点的图,必须有上述属性才能双连通。 换句话说: 如果满足以下条件,则称图为双连通: 1) 它是连接的,也就是说,通过一条简单的路径,可以从每个其他顶点到达每个顶点。 2) 即使移除任何顶点,图形仍保持连接。

下面是一些例子。

Biconnected1 Biconnected1 Biconnected Biconnected4 Biconnected5

看见 更多例子。 如何确定给定的图是否是双连通的?

连通图是双连通的,如果它是连通的,并且没有任何连通 关节点 .我们主要需要检查图表中的两件事。 1) 图表是连通的。 2) 图中没有连接点。

我们从任何顶点开始进行DFS遍历。在DFS遍历中,我们检查是否存在任何连接点。如果我们没有找到任何连接点,那么这个图是双连接的。最后,我们需要检查在DFS中是否所有顶点都是可到达的。如果所有顶点都不可到达,则图形甚至不连通。

以下是上述方法的实现。

C++

// A C++ program to find if a given undirected graph is
// biconnected
#include<iostream>
#include <list>
#define NIL -1
using namespace std;
// A class that represents an undirected graph
class Graph
{
int V; // No. of vertices
list< int > *adj; // A dynamic array of adjacency lists
bool isBCUtil( int v, bool visited[], int disc[], int low[],
int parent[]);
public :
Graph( int V); // Constructor
void addEdge( int v, int w); // to add an edge to graph
bool isBC(); // returns true if graph is Biconnected
};
Graph::Graph( int V)
{
this ->V = V;
adj = new list< int >[V];
}
void Graph::addEdge( int v, int w)
{
adj[v].push_back(w);
adj[w].push_back(v); // Note: the graph is undirected
}
// A recursive function that returns true if there is an articulation
// point in given graph, otherwise returns false.
// This function is almost same as isAPUtil() here ( http://goo.gl/Me9Fw )
// u --> The vertex to be visited next
// visited[] --> keeps track of visited vertices
// disc[] --> Stores discovery times of visited vertices
// parent[] --> Stores parent vertices in DFS tree
bool Graph::isBCUtil( int u, bool visited[], int disc[], int low[], int parent[])
{
// A static variable is used for simplicity, we can avoid use of static
// variable by passing a pointer.
static int time = 0;
// Count of children in DFS Tree
int children = 0;
// Mark the current node as visited
visited[u] = true ;
// Initialize discovery time and low value
disc[u] = low[u] = ++ time ;
// Go through all vertices adjacent to this
list< int >::iterator i;
for (i = adj[u].begin(); i != adj[u].end(); ++i)
{
int v = *i; // v is current adjacent of u
// If v is not visited yet, then make it a child of u
// in DFS tree and recur for it
if (!visited[v])
{
children++;
parent[v] = u;
// check if subgraph rooted with v has an articulation point
if (isBCUtil(v, visited, disc, low, parent))
return true ;
// Check if the subtree rooted with v has a connection to
// one of the ancestors of u
low[u]  = min(low[u], low[v]);
// u is an articulation point in following cases
// (1) u is root of DFS tree and has two or more children.
if (parent[u] == NIL && children > 1)
return true ;
// (2) If u is not root and low value of one of its child is
// more than discovery value of u.
if (parent[u] != NIL && low[v] >= disc[u])
return true ;
}
// Update low value of u for parent function calls.
else if (v != parent[u])
low[u]  = min(low[u], disc[v]);
}
return false ;
}
// The main function that returns true if graph is Biconnected,
// otherwise false. It uses recursive function isBCUtil()
bool Graph::isBC()
{
// Mark all the vertices as not visited
bool *visited = new bool [V];
int *disc = new int [V];
int *low = new int [V];
int *parent = new int [V];
// Initialize parent and visited, and ap(articulation point)
//  arrays
for ( int i = 0; i < V; i++)
{
parent[i] = NIL;
visited[i] = false ;
}
// Call the recursive helper function to find if there is an articulation
// point in given graph. We do DFS traversal starting from vertex 0
if (isBCUtil(0, visited, disc, low, parent) == true )
return false ;
// Now check whether the given graph is connected or not. An undirected
// graph is connected if all vertices are reachable from any starting
// point (we have taken 0 as starting point)
for ( int i = 0; i < V; i++)
if (visited[i] == false )
return false ;
return true ;
}
// Driver program to test above function
int main()
{
// Create graphs given in above diagrams
Graph g1(2);
g1.addEdge(0, 1);
g1.isBC()? cout << "Yes" : cout << "No" ;
Graph g2(5);
g2.addEdge(1, 0);
g2.addEdge(0, 2);
g2.addEdge(2, 1);
g2.addEdge(0, 3);
g2.addEdge(3, 4);
g2.addEdge(2, 4);
g2.isBC()? cout << "Yes" : cout << "No" ;
Graph g3(3);
g3.addEdge(0, 1);
g3.addEdge(1, 2);
g3.isBC()? cout << "Yes" : cout << "No" ;
Graph g4(5);
g4.addEdge(1, 0);
g4.addEdge(0, 2);
g4.addEdge(2, 1);
g4.addEdge(0, 3);
g4.addEdge(3, 4);
g4.isBC()? cout << "Yes" : cout << "No" ;
Graph g5(3);
g5.addEdge(0, 1);
g5.addEdge(1, 2);
g5.addEdge(2, 0);
g5.isBC()? cout << "Yes" : cout << "No" ;
return 0;
}


JAVA

// A Java program to find if a given undirected graph is
// biconnected
import java.io.*;
import java.util.*;
import java.util.LinkedList;
// This class represents a directed graph using adjacency
// list representation
class Graph
{
private int V; // No. of vertices
// Array  of lists for Adjacency List Representation
private LinkedList<Integer> adj[];
int time = 0 ;
static final int NIL = - 1 ;
// Constructor
Graph( int v)
{
V = v;
adj = new LinkedList[v];
for ( int i= 0 ; i<v; ++i)
adj[i] = new LinkedList();
}
//Function to add an edge into the graph
void addEdge( int v, int w)
{
adj[v].add(w); //Note that the graph is undirected.
adj[w].add(v);
}
// A recursive function that returns true if there is an articulation
// point in given graph, otherwise returns false.
// This function is almost same as isAPUtil() @ http://goo.gl/Me9Fw
// u --> The vertex to be visited next
// visited[] --> keeps track of visited vertices
// disc[] --> Stores discovery times of visited vertices
// parent[] --> Stores parent vertices in DFS tree
boolean isBCUtil( int u, boolean visited[], int disc[], int low[],
int parent[])
{
// Count of children in DFS Tree
int children = 0 ;
// Mark the current node as visited
visited[u] = true ;
// Initialize discovery time and low value
disc[u] = low[u] = ++time;
// Go through all vertices adjacent to this
Iterator<Integer> i = adj[u].iterator();
while (i.hasNext())
{
int v = i.next(); // v is current adjacent of u
// If v is not visited yet, then make it a child of u
// in DFS tree and recur for it
if (!visited[v])
{
children++;
parent[v] = u;
// check if subgraph rooted with v has an articulation point
if (isBCUtil(v, visited, disc, low, parent))
return true ;
// Check if the subtree rooted with v has a connection to
// one of the ancestors of u
low[u]  = Math.min(low[u], low[v]);
// u is an articulation point in following cases
// (1) u is root of DFS tree and has two or more children.
if (parent[u] == NIL && children > 1 )
return true ;
// (2) If u is not root and low value of one of its
//  child is more than discovery value of u.
if (parent[u] != NIL && low[v] >= disc[u])
return true ;
}
// Update low value of u for parent function calls.
else if (v != parent[u])
low[u]  = Math.min(low[u], disc[v]);
}
return false ;
}
// The main function that returns true if graph is Biconnected,
// otherwise false. It uses recursive function isBCUtil()
boolean isBC()
{
// Mark all the vertices as not visited
boolean visited[] = new boolean [V];
int disc[] = new int [V];
int low[] = new int [V];
int parent[] = new int [V];
// Initialize parent and visited, and ap(articulation point)
// arrays
for ( int i = 0 ; i < V; i++)
{
parent[i] = NIL;
visited[i] = false ;
}
// Call the recursive helper function to find if there is an
// articulation/ point in given graph. We do DFS traversal
// starting from vertex 0
if (isBCUtil( 0 , visited, disc, low, parent) == true )
return false ;
// Now check whether the given graph is connected or not.
// An undirected graph is connected if all vertices are
// reachable from any starting point (we have taken 0 as
// starting point)
for ( int i = 0 ; i < V; i++)
if (visited[i] == false )
return false ;
return true ;
}
// Driver method
public static void main(String args[])
{
// Create graphs given in above diagrams
Graph g1 = new Graph( 2 );
g1.addEdge( 0 , 1 );
if (g1.isBC())
System.out.println( "Yes" );
else
System.out.println( "No" );
Graph g2 = new Graph( 5 );
g2.addEdge( 1 , 0 );
g2.addEdge( 0 , 2 );
g2.addEdge( 2 , 1 );
g2.addEdge( 0 , 3 );
g2.addEdge( 3 , 4 );
g2.addEdge( 2 , 4 );
if (g2.isBC())
System.out.println( "Yes" );
else
System.out.println( "No" );
Graph g3 = new Graph( 3 );
g3.addEdge( 0 , 1 );
g3.addEdge( 1 , 2 );
if (g3.isBC())
System.out.println( "Yes" );
else
System.out.println( "No" );
Graph g4 = new Graph( 5 );
g4.addEdge( 1 , 0 );
g4.addEdge( 0 , 2 );
g4.addEdge( 2 , 1 );
g4.addEdge( 0 , 3 );
g4.addEdge( 3 , 4 );
if (g4.isBC())
System.out.println( "Yes" );
else
System.out.println( "No" );
Graph g5= new Graph( 3 );
g5.addEdge( 0 , 1 );
g5.addEdge( 1 , 2 );
g5.addEdge( 2 , 0 );
if (g5.isBC())
System.out.println( "Yes" );
else
System.out.println( "No" );
}
}
// This code is contributed by Aakash Hasija


Python3

# A Python program to find if a given undirected graph is
# biconnected
from collections import defaultdict
#This class represents an undirected graph using adjacency list representation
class Graph:
def __init__( self ,vertices):
self .V = vertices #No. of vertices
self .graph = defaultdict( list ) # default dictionary to store graph
self .Time = 0
# function to add an edge to graph
def addEdge( self ,u,v):
self .graph[u].append(v)
self .graph[v].append(u)
'''A recursive function that returns true if there is an articulation
point in given graph, otherwise returns false.
This function is almost same as isAPUtil()
u --> The vertex to be visited next
visited[] --> keeps track of visited vertices
disc[] --> Stores discovery times of visited vertices
parent[] --> Stores parent vertices in DFS tree'''
def isBCUtil( self ,u, visited, parent, low, disc):
#Count of children in current node
children = 0
# Mark the current node as visited and print it
visited[u] = True
# Initialize discovery time and low value
disc[u] = self .Time
low[u] = self .Time
self .Time + = 1
#Recur for all the vertices adjacent to this vertex
for v in self .graph[u]:
# If v is not visited yet, then make it a child of u
# in DFS tree and recur for it
if visited[v] = = False :
parent[v] = u
children + = 1
if self .isBCUtil(v, visited, parent, low, disc):
return True
# Check if the subtree rooted with v has a connection to
# one of the ancestors of u
low[u] = min (low[u], low[v])
# u is an articulation point in following cases
# (1) u is root of DFS tree and has two or more children.
if parent[u] = = - 1 and children > 1 :
return True
#(2) If u is not root and low value of one of its child is more
# than discovery value of u.
if parent[u] ! = - 1 and low[v] > = disc[u]:
return True
elif v ! = parent[u]: # Update low value of u for parent function calls.
low[u] = min (low[u], disc[v])
return False
# The main function that returns true if graph is Biconnected,
# otherwise false. It uses recursive function isBCUtil()
def isBC( self ):
# Mark all the vertices as not visited and Initialize parent and visited,
# and ap(articulation point) arrays
visited = [ False ] * ( self .V)
disc = [ float ( "Inf" )] * ( self .V)
low = [ float ( "Inf" )] * ( self .V)
parent = [ - 1 ] * ( self .V)
# Call the recursive helper function to find if there is an
# articulation points in given graph. We do DFS traversal starting
# from vertex 0
if self .isBCUtil( 0 , visited, parent, low, disc):
return False
'''Now check whether the given graph is connected or not.
An undirected graph is connected if all vertices are
reachable from any starting point (we have taken 0 as
starting point)'''
if any (i = = False for i in visited):
return False
return True
# Create a graph given in the above diagram
g1 = Graph( 2 )
g1.addEdge( 0 , 1 )
print ( "Yes" if g1.isBC() else "No" )
g2 = Graph( 5 )
g2.addEdge( 1 , 0 )
g2.addEdge( 0 , 2 )
g2.addEdge( 2 , 1 )
g2.addEdge( 0 , 3 )
g2.addEdge( 3 , 4 )
g2.addEdge( 2 , 4 )
print ( "Yes" if g2.isBC() else "No" )
g3 = Graph( 3 )
g3.addEdge( 0 , 1 )
g3.addEdge( 1 , 2 )
print ( "Yes" if g3.isBC() else "No" )
g4 = Graph ( 5 )
g4.addEdge( 1 , 0 )
g4.addEdge( 0 , 2 )
g4.addEdge( 2 , 1 )
g4.addEdge( 0 , 3 )
g4.addEdge( 3 , 4 )
print ( "Yes" if g4.isBC() else "No" )
g5 = Graph( 3 )
g5.addEdge( 0 , 1 )
g5.addEdge( 1 , 2 )
g5.addEdge( 2 , 0 )
print ( "Yes" if g5.isBC() else "No" )
#This code is contributed by Neelam Yadav


C#

// A C# program to find if a given undirected
// graph is biconnected
using System;
using System.Collections.Generic;
// This class represents a directed graph
// using adjacency list representation
class Graph{
// No. of vertices
public int V;
// Array  of lists for Adjacency
// List Representation
public List< int > []adj;
int time = 0;
static readonly int NIL = -1;
// Constructor
Graph( int v)
{
V = v;
adj = new List< int >[v];
for ( int i = 0; i < v; ++i)
adj[i] = new List< int >();
}
// Function to add an edge into the graph
void addEdge( int v, int w)
{
// Note that the graph is undirected.
adj[v].Add(w);
adj[w].Add(v);
}
// A recursive function that returns true
// if there is an articulation point in
// given graph, otherwise returns false.
// This function is almost same as isAPUtil()
// u --> The vertex to be visited next
// visited[] --> keeps track of visited vertices
// disc[] --> Stores discovery times of visited vertices
// parent[] --> Stores parent vertices in DFS tree
bool isBCUtil( int u, bool []visited,
int []disc, int []low,
int []parent)
{
// Count of children in DFS Tree
int children = 0;
// Mark the current node as visited
visited[u] = true ;
// Initialize discovery time and low value
disc[u] = low[u] = ++time;
// Go through all vertices adjacent to this
foreach ( int i in adj[u])
{
// v is current adjacent of u
int v = i;
// If v is not visited yet, then
// make it a child of u in DFS
// tree and recur for it
if (!visited[v])
{
children++;
parent[v] = u;
// Check if subgraph rooted with v
// has an articulation point
if (isBCUtil(v, visited, disc,
low, parent))
return true ;
// Check if the subtree rooted with
// v has a connection to one of
// the ancestors of u
low[u]  = Math.Min(low[u], low[v]);
// u is an articulation point in
// following cases
// (1) u is root of DFS tree and
// has two or more children.
if (parent[u] == NIL && children > 1)
return true ;
// (2) If u is not root and low
// value of one of its child is
// more than discovery value of u.
if (parent[u] != NIL && low[v] >= disc[u])
return true ;
}
// Update low value of u for
// parent function calls.
else if (v != parent[u])
low[u]  = Math.Min(low[u], disc[v]);
}
return false ;
}
// The main function that returns true
// if graph is Biconnected, otherwise
// false. It uses recursive function
// isBCUtil()
bool isBC()
{
// Mark all the vertices as not visited
bool []visited = new bool [V];
int []disc = new int [V];
int []low = new int [V];
int []parent = new int [V];
// Initialize parent and visited,
// and ap(articulation point)
// arrays
for ( int i = 0; i < V; i++)
{
parent[i] = NIL;
visited[i] = false ;
}
// Call the recursive helper function to
// find if there is an articulation/ point
// in given graph. We do DFS traversal
// starting from vertex 0
if (isBCUtil(0, visited, disc,
low, parent) == true )
return false ;
// Now check whether the given graph
// is connected or not. An undirected
// graph is connected if all vertices are
// reachable from any starting point
// (we have taken 0 as starting point)
for ( int i = 0; i < V; i++)
if (visited[i] == false )
return false ;
return true ;
}
// Driver code
public static void Main(String []args)
{
// Create graphs given in above diagrams
Graph g1 = new Graph(2);
g1.addEdge(0, 1);
if (g1.isBC())
Console.WriteLine( "Yes" );
else
Console.WriteLine( "No" );
Graph g2 = new Graph(5);
g2.addEdge(1, 0);
g2.addEdge(0, 2);
g2.addEdge(2, 1);
g2.addEdge(0, 3);
g2.addEdge(3, 4);
g2.addEdge(2, 4);
if (g2.isBC())
Console.WriteLine( "Yes" );
else
Console.WriteLine( "No" );
Graph g3 = new Graph(3);
g3.addEdge(0, 1);
g3.addEdge(1, 2);
if (g3.isBC())
Console.WriteLine( "Yes" );
else
Console.WriteLine( "No" );
Graph g4 = new Graph(5);
g4.addEdge(1, 0);
g4.addEdge(0, 2);
g4.addEdge(2, 1);
g4.addEdge(0, 3);
g4.addEdge(3, 4);
if (g4.isBC())
Console.WriteLine( "Yes" );
else
Console.WriteLine( "No" );
Graph g5 = new Graph(3);
g5.addEdge(0, 1);
g5.addEdge(1, 2);
g5.addEdge(2, 0);
if (g5.isBC())
Console.WriteLine( "Yes" );
else
Console.WriteLine( "No" );
}
}
// This code is contributed by Amit Katiyar


Javascript

<script>
// A Javascript program to find if a given undirected graph is
// biconnected
// This class represents a directed graph using adjacency
// list representation
class Graph
{
// Constructor
constructor(v)
{
this .V = v;
this .adj = new Array(v);
this .NIL = -1;
this .time = 0;
for (let i=0; i<v; ++i)
this .adj[i] = [];
}
//Function to add an edge into the graph
addEdge(v,w)
{
this .adj[v].push(w); //Note that the graph is undirected.
this .adj[w].push(v);
}
// A recursive function that returns true if there is an articulation
// point in given graph, otherwise returns false.
// This function is almost same as isAPUtil() @ http://goo.gl/Me9Fw
// u --> The vertex to be visited next
// visited[] --> keeps track of visited vertices
// disc[] --> Stores discovery times of visited vertices
// parent[] --> Stores parent vertices in DFS tree
isBCUtil(u,visited,disc,low,parent)
{
// Count of children in DFS Tree
let children = 0;
// Mark the current node as visited
visited[u] = true ;
// Initialize discovery time and low value
disc[u] = low[u] = ++ this .time;
// Go through all vertices adjacent to this
for (let i of this .adj[u])
{
let v = i; // v is current adjacent of u
// If v is not visited yet, then make it a child of u
// in DFS tree and recur for it
if (!visited[v])
{
children++;
parent[v] = u;
// check if subgraph rooted with v has an articulation point
if ( this .isBCUtil(v, visited, disc, low, parent))
return true ;
// Check if the subtree rooted with v has a connection to
// one of the ancestors of u
low[u]  = Math.min(low[u], low[v]);
// u is an articulation point in following cases
// (1) u is root of DFS tree and has two or more children.
if (parent[u] == this .NIL && children > 1)
return true ;
// (2) If u is not root and low value of one of its
//  child is more than discovery value of u.
if (parent[u] != this .NIL && low[v] >= disc[u])
return true ;
}
// Update low value of u for parent function calls.
else if (v != parent[u])
low[u]  = Math.min(low[u], disc[v]);
}
return false ;
}
// The main function that returns true if graph is Biconnected,
// otherwise false. It uses recursive function isBCUtil()
isBC()
{
// Mark all the vertices as not visited
let visited = new Array( this .V);
let disc = new Array( this .V);
let low = new Array( this .V);
let parent = new Array( this .V);
// Initialize parent and visited, and ap(articulation point)
// arrays
for (let i = 0; i < this .V; i++)
{
parent[i] = this .NIL;
visited[i] = false ;
}
// Call the recursive helper function to find if there is an
// articulation/ point in given graph. We do DFS traversal
// starting from vertex 0
if ( this .isBCUtil(0, visited, disc, low, parent) == true )
return false ;
// Now check whether the given graph is connected or not.
// An undirected graph is connected if all vertices are
// reachable from any starting point (we have taken 0 as
// starting point)
for (let i = 0; i < this .V; i++)
if (visited[i] == false )
return false ;
return true ;
}
}
// Driver method
// Create graphs given in above diagrams
let g1 = new Graph(2);
g1.addEdge(0, 1);
if (g1.isBC())
document.write( "Yes<br>" );
else
document.write( "No<br>" );
let g2 = new Graph(5);
g2.addEdge(1, 0);
g2.addEdge(0, 2);
g2.addEdge(2, 1);
g2.addEdge(0, 3);
g2.addEdge(3, 4);
g2.addEdge(2, 4);
if (g2.isBC())
document.write( "Yes<br>" );
else
document.write( "No<br>" );
let g3 = new Graph(3);
g3.addEdge(0, 1);
g3.addEdge(1, 2);
if (g3.isBC())
document.write( "Yes<br>" );
else
document.write( "No<br>" );
let g4 = new Graph(5);
g4.addEdge(1, 0);
g4.addEdge(0, 2);
g4.addEdge(2, 1);
g4.addEdge(0, 3);
g4.addEdge(3, 4);
if (g4.isBC())
document.write( "Yes<br>" );
else
document.write( "No<br>" );
let g5= new Graph(3);
g5.addEdge(0, 1);
g5.addEdge(1, 2);
g5.addEdge(2, 0);
if (g5.isBC())
document.write( "Yes<br>" );
else
document.write( "No<br>" );
// This code is contributed by avanitrachhadiya2155
</script>


输出:

YesYesNoNoYes

时间复杂性: 上面的函数是一个带有附加数组的简单DFS。因此,对于图的邻接表表示,时间复杂度与DFS相同,DFS是O(V+E)。

参考资料: http://www.cs.purdue.edu/homes/ayg/CS251/slides/chap9d.pdf 如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写下评论。

© 版权声明
THE END
喜欢就支持一下吧
点赞5 分享