如果任意两个顶点之间有两条顶点不相交的路径,则无向图称为双连通图。在双连通图中,任意两个顶点都有一个简单的循环。
null
按照惯例,由一条边连接的两个节点形成一个双连通图,但这并不验证上述属性。对于一个有两个以上顶点的图,必须有上述属性才能双连通。 换句话说: 如果满足以下条件,则称图为双连通: 1) 它是连接的,也就是说,通过一条简单的路径,可以从每个其他顶点到达每个顶点。 2) 即使移除任何顶点,图形仍保持连接。
下面是一些例子。
看见 这 更多例子。 如何确定给定的图是否是双连通的?
连通图是双连通的,如果它是连通的,并且没有任何连通 关节点 .我们主要需要检查图表中的两件事。 1) 图表是连通的。 2) 图中没有连接点。
我们从任何顶点开始进行DFS遍历。在DFS遍历中,我们检查是否存在任何连接点。如果我们没有找到任何连接点,那么这个图是双连接的。最后,我们需要检查在DFS中是否所有顶点都是可到达的。如果所有顶点都不可到达,则图形甚至不连通。
以下是上述方法的实现。
C++
// A C++ program to find if a given undirected graph is // biconnected #include<iostream> #include <list> #define NIL -1 using namespace std; // A class that represents an undirected graph class Graph { int V; // No. of vertices list< int > *adj; // A dynamic array of adjacency lists bool isBCUtil( int v, bool visited[], int disc[], int low[], int parent[]); public : Graph( int V); // Constructor void addEdge( int v, int w); // to add an edge to graph bool isBC(); // returns true if graph is Biconnected }; Graph::Graph( int V) { this ->V = V; adj = new list< int >[V]; } void Graph::addEdge( int v, int w) { adj[v].push_back(w); adj[w].push_back(v); // Note: the graph is undirected } // A recursive function that returns true if there is an articulation // point in given graph, otherwise returns false. // This function is almost same as isAPUtil() here ( http://goo.gl/Me9Fw ) // u --> The vertex to be visited next // visited[] --> keeps track of visited vertices // disc[] --> Stores discovery times of visited vertices // parent[] --> Stores parent vertices in DFS tree bool Graph::isBCUtil( int u, bool visited[], int disc[], int low[], int parent[]) { // A static variable is used for simplicity, we can avoid use of static // variable by passing a pointer. static int time = 0; // Count of children in DFS Tree int children = 0; // Mark the current node as visited visited[u] = true ; // Initialize discovery time and low value disc[u] = low[u] = ++ time ; // Go through all vertices adjacent to this list< int >::iterator i; for (i = adj[u].begin(); i != adj[u].end(); ++i) { int v = *i; // v is current adjacent of u // If v is not visited yet, then make it a child of u // in DFS tree and recur for it if (!visited[v]) { children++; parent[v] = u; // check if subgraph rooted with v has an articulation point if (isBCUtil(v, visited, disc, low, parent)) return true ; // Check if the subtree rooted with v has a connection to // one of the ancestors of u low[u] = min(low[u], low[v]); // u is an articulation point in following cases // (1) u is root of DFS tree and has two or more children. if (parent[u] == NIL && children > 1) return true ; // (2) If u is not root and low value of one of its child is // more than discovery value of u. if (parent[u] != NIL && low[v] >= disc[u]) return true ; } // Update low value of u for parent function calls. else if (v != parent[u]) low[u] = min(low[u], disc[v]); } return false ; } // The main function that returns true if graph is Biconnected, // otherwise false. It uses recursive function isBCUtil() bool Graph::isBC() { // Mark all the vertices as not visited bool *visited = new bool [V]; int *disc = new int [V]; int *low = new int [V]; int *parent = new int [V]; // Initialize parent and visited, and ap(articulation point) // arrays for ( int i = 0; i < V; i++) { parent[i] = NIL; visited[i] = false ; } // Call the recursive helper function to find if there is an articulation // point in given graph. We do DFS traversal starting from vertex 0 if (isBCUtil(0, visited, disc, low, parent) == true ) return false ; // Now check whether the given graph is connected or not. An undirected // graph is connected if all vertices are reachable from any starting // point (we have taken 0 as starting point) for ( int i = 0; i < V; i++) if (visited[i] == false ) return false ; return true ; } // Driver program to test above function int main() { // Create graphs given in above diagrams Graph g1(2); g1.addEdge(0, 1); g1.isBC()? cout << "Yes" : cout << "No" ; Graph g2(5); g2.addEdge(1, 0); g2.addEdge(0, 2); g2.addEdge(2, 1); g2.addEdge(0, 3); g2.addEdge(3, 4); g2.addEdge(2, 4); g2.isBC()? cout << "Yes" : cout << "No" ; Graph g3(3); g3.addEdge(0, 1); g3.addEdge(1, 2); g3.isBC()? cout << "Yes" : cout << "No" ; Graph g4(5); g4.addEdge(1, 0); g4.addEdge(0, 2); g4.addEdge(2, 1); g4.addEdge(0, 3); g4.addEdge(3, 4); g4.isBC()? cout << "Yes" : cout << "No" ; Graph g5(3); g5.addEdge(0, 1); g5.addEdge(1, 2); g5.addEdge(2, 0); g5.isBC()? cout << "Yes" : cout << "No" ; return 0; } |
JAVA
// A Java program to find if a given undirected graph is // biconnected import java.io.*; import java.util.*; import java.util.LinkedList; // This class represents a directed graph using adjacency // list representation class Graph { private int V; // No. of vertices // Array of lists for Adjacency List Representation private LinkedList<Integer> adj[]; int time = 0 ; static final int NIL = - 1 ; // Constructor Graph( int v) { V = v; adj = new LinkedList[v]; for ( int i= 0 ; i<v; ++i) adj[i] = new LinkedList(); } //Function to add an edge into the graph void addEdge( int v, int w) { adj[v].add(w); //Note that the graph is undirected. adj[w].add(v); } // A recursive function that returns true if there is an articulation // point in given graph, otherwise returns false. // This function is almost same as isAPUtil() @ http://goo.gl/Me9Fw // u --> The vertex to be visited next // visited[] --> keeps track of visited vertices // disc[] --> Stores discovery times of visited vertices // parent[] --> Stores parent vertices in DFS tree boolean isBCUtil( int u, boolean visited[], int disc[], int low[], int parent[]) { // Count of children in DFS Tree int children = 0 ; // Mark the current node as visited visited[u] = true ; // Initialize discovery time and low value disc[u] = low[u] = ++time; // Go through all vertices adjacent to this Iterator<Integer> i = adj[u].iterator(); while (i.hasNext()) { int v = i.next(); // v is current adjacent of u // If v is not visited yet, then make it a child of u // in DFS tree and recur for it if (!visited[v]) { children++; parent[v] = u; // check if subgraph rooted with v has an articulation point if (isBCUtil(v, visited, disc, low, parent)) return true ; // Check if the subtree rooted with v has a connection to // one of the ancestors of u low[u] = Math.min(low[u], low[v]); // u is an articulation point in following cases // (1) u is root of DFS tree and has two or more children. if (parent[u] == NIL && children > 1 ) return true ; // (2) If u is not root and low value of one of its // child is more than discovery value of u. if (parent[u] != NIL && low[v] >= disc[u]) return true ; } // Update low value of u for parent function calls. else if (v != parent[u]) low[u] = Math.min(low[u], disc[v]); } return false ; } // The main function that returns true if graph is Biconnected, // otherwise false. It uses recursive function isBCUtil() boolean isBC() { // Mark all the vertices as not visited boolean visited[] = new boolean [V]; int disc[] = new int [V]; int low[] = new int [V]; int parent[] = new int [V]; // Initialize parent and visited, and ap(articulation point) // arrays for ( int i = 0 ; i < V; i++) { parent[i] = NIL; visited[i] = false ; } // Call the recursive helper function to find if there is an // articulation/ point in given graph. We do DFS traversal // starting from vertex 0 if (isBCUtil( 0 , visited, disc, low, parent) == true ) return false ; // Now check whether the given graph is connected or not. // An undirected graph is connected if all vertices are // reachable from any starting point (we have taken 0 as // starting point) for ( int i = 0 ; i < V; i++) if (visited[i] == false ) return false ; return true ; } // Driver method public static void main(String args[]) { // Create graphs given in above diagrams Graph g1 = new Graph( 2 ); g1.addEdge( 0 , 1 ); if (g1.isBC()) System.out.println( "Yes" ); else System.out.println( "No" ); Graph g2 = new Graph( 5 ); g2.addEdge( 1 , 0 ); g2.addEdge( 0 , 2 ); g2.addEdge( 2 , 1 ); g2.addEdge( 0 , 3 ); g2.addEdge( 3 , 4 ); g2.addEdge( 2 , 4 ); if (g2.isBC()) System.out.println( "Yes" ); else System.out.println( "No" ); Graph g3 = new Graph( 3 ); g3.addEdge( 0 , 1 ); g3.addEdge( 1 , 2 ); if (g3.isBC()) System.out.println( "Yes" ); else System.out.println( "No" ); Graph g4 = new Graph( 5 ); g4.addEdge( 1 , 0 ); g4.addEdge( 0 , 2 ); g4.addEdge( 2 , 1 ); g4.addEdge( 0 , 3 ); g4.addEdge( 3 , 4 ); if (g4.isBC()) System.out.println( "Yes" ); else System.out.println( "No" ); Graph g5= new Graph( 3 ); g5.addEdge( 0 , 1 ); g5.addEdge( 1 , 2 ); g5.addEdge( 2 , 0 ); if (g5.isBC()) System.out.println( "Yes" ); else System.out.println( "No" ); } } // This code is contributed by Aakash Hasija |
Python3
# A Python program to find if a given undirected graph is # biconnected from collections import defaultdict #This class represents an undirected graph using adjacency list representation class Graph: def __init__( self ,vertices): self .V = vertices #No. of vertices self .graph = defaultdict( list ) # default dictionary to store graph self .Time = 0 # function to add an edge to graph def addEdge( self ,u,v): self .graph[u].append(v) self .graph[v].append(u) '''A recursive function that returns true if there is an articulation point in given graph, otherwise returns false. This function is almost same as isAPUtil() u --> The vertex to be visited next visited[] --> keeps track of visited vertices disc[] --> Stores discovery times of visited vertices parent[] --> Stores parent vertices in DFS tree''' def isBCUtil( self ,u, visited, parent, low, disc): #Count of children in current node children = 0 # Mark the current node as visited and print it visited[u] = True # Initialize discovery time and low value disc[u] = self .Time low[u] = self .Time self .Time + = 1 #Recur for all the vertices adjacent to this vertex for v in self .graph[u]: # If v is not visited yet, then make it a child of u # in DFS tree and recur for it if visited[v] = = False : parent[v] = u children + = 1 if self .isBCUtil(v, visited, parent, low, disc): return True # Check if the subtree rooted with v has a connection to # one of the ancestors of u low[u] = min (low[u], low[v]) # u is an articulation point in following cases # (1) u is root of DFS tree and has two or more children. if parent[u] = = - 1 and children > 1 : return True #(2) If u is not root and low value of one of its child is more # than discovery value of u. if parent[u] ! = - 1 and low[v] > = disc[u]: return True elif v ! = parent[u]: # Update low value of u for parent function calls. low[u] = min (low[u], disc[v]) return False # The main function that returns true if graph is Biconnected, # otherwise false. It uses recursive function isBCUtil() def isBC( self ): # Mark all the vertices as not visited and Initialize parent and visited, # and ap(articulation point) arrays visited = [ False ] * ( self .V) disc = [ float ( "Inf" )] * ( self .V) low = [ float ( "Inf" )] * ( self .V) parent = [ - 1 ] * ( self .V) # Call the recursive helper function to find if there is an # articulation points in given graph. We do DFS traversal starting # from vertex 0 if self .isBCUtil( 0 , visited, parent, low, disc): return False '''Now check whether the given graph is connected or not. An undirected graph is connected if all vertices are reachable from any starting point (we have taken 0 as starting point)''' if any (i = = False for i in visited): return False return True # Create a graph given in the above diagram g1 = Graph( 2 ) g1.addEdge( 0 , 1 ) print ( "Yes" if g1.isBC() else "No" ) g2 = Graph( 5 ) g2.addEdge( 1 , 0 ) g2.addEdge( 0 , 2 ) g2.addEdge( 2 , 1 ) g2.addEdge( 0 , 3 ) g2.addEdge( 3 , 4 ) g2.addEdge( 2 , 4 ) print ( "Yes" if g2.isBC() else "No" ) g3 = Graph( 3 ) g3.addEdge( 0 , 1 ) g3.addEdge( 1 , 2 ) print ( "Yes" if g3.isBC() else "No" ) g4 = Graph ( 5 ) g4.addEdge( 1 , 0 ) g4.addEdge( 0 , 2 ) g4.addEdge( 2 , 1 ) g4.addEdge( 0 , 3 ) g4.addEdge( 3 , 4 ) print ( "Yes" if g4.isBC() else "No" ) g5 = Graph( 3 ) g5.addEdge( 0 , 1 ) g5.addEdge( 1 , 2 ) g5.addEdge( 2 , 0 ) print ( "Yes" if g5.isBC() else "No" ) #This code is contributed by Neelam Yadav |
C#
// A C# program to find if a given undirected // graph is biconnected using System; using System.Collections.Generic; // This class represents a directed graph // using adjacency list representation class Graph{ // No. of vertices public int V; // Array of lists for Adjacency // List Representation public List< int > []adj; int time = 0; static readonly int NIL = -1; // Constructor Graph( int v) { V = v; adj = new List< int >[v]; for ( int i = 0; i < v; ++i) adj[i] = new List< int >(); } // Function to add an edge into the graph void addEdge( int v, int w) { // Note that the graph is undirected. adj[v].Add(w); adj[w].Add(v); } // A recursive function that returns true // if there is an articulation point in // given graph, otherwise returns false. // This function is almost same as isAPUtil() // @ http://goo.gl/Me9Fw // u --> The vertex to be visited next // visited[] --> keeps track of visited vertices // disc[] --> Stores discovery times of visited vertices // parent[] --> Stores parent vertices in DFS tree bool isBCUtil( int u, bool []visited, int []disc, int []low, int []parent) { // Count of children in DFS Tree int children = 0; // Mark the current node as visited visited[u] = true ; // Initialize discovery time and low value disc[u] = low[u] = ++time; // Go through all vertices adjacent to this foreach ( int i in adj[u]) { // v is current adjacent of u int v = i; // If v is not visited yet, then // make it a child of u in DFS // tree and recur for it if (!visited[v]) { children++; parent[v] = u; // Check if subgraph rooted with v // has an articulation point if (isBCUtil(v, visited, disc, low, parent)) return true ; // Check if the subtree rooted with // v has a connection to one of // the ancestors of u low[u] = Math.Min(low[u], low[v]); // u is an articulation point in // following cases // (1) u is root of DFS tree and // has two or more children. if (parent[u] == NIL && children > 1) return true ; // (2) If u is not root and low // value of one of its child is // more than discovery value of u. if (parent[u] != NIL && low[v] >= disc[u]) return true ; } // Update low value of u for // parent function calls. else if (v != parent[u]) low[u] = Math.Min(low[u], disc[v]); } return false ; } // The main function that returns true // if graph is Biconnected, otherwise // false. It uses recursive function // isBCUtil() bool isBC() { // Mark all the vertices as not visited bool []visited = new bool [V]; int []disc = new int [V]; int []low = new int [V]; int []parent = new int [V]; // Initialize parent and visited, // and ap(articulation point) // arrays for ( int i = 0; i < V; i++) { parent[i] = NIL; visited[i] = false ; } // Call the recursive helper function to // find if there is an articulation/ point // in given graph. We do DFS traversal // starting from vertex 0 if (isBCUtil(0, visited, disc, low, parent) == true ) return false ; // Now check whether the given graph // is connected or not. An undirected // graph is connected if all vertices are // reachable from any starting point // (we have taken 0 as starting point) for ( int i = 0; i < V; i++) if (visited[i] == false ) return false ; return true ; } // Driver code public static void Main(String []args) { // Create graphs given in above diagrams Graph g1 = new Graph(2); g1.addEdge(0, 1); if (g1.isBC()) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); Graph g2 = new Graph(5); g2.addEdge(1, 0); g2.addEdge(0, 2); g2.addEdge(2, 1); g2.addEdge(0, 3); g2.addEdge(3, 4); g2.addEdge(2, 4); if (g2.isBC()) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); Graph g3 = new Graph(3); g3.addEdge(0, 1); g3.addEdge(1, 2); if (g3.isBC()) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); Graph g4 = new Graph(5); g4.addEdge(1, 0); g4.addEdge(0, 2); g4.addEdge(2, 1); g4.addEdge(0, 3); g4.addEdge(3, 4); if (g4.isBC()) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); Graph g5 = new Graph(3); g5.addEdge(0, 1); g5.addEdge(1, 2); g5.addEdge(2, 0); if (g5.isBC()) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); } } // This code is contributed by Amit Katiyar |
Javascript
<script> // A Javascript program to find if a given undirected graph is // biconnected // This class represents a directed graph using adjacency // list representation class Graph { // Constructor constructor(v) { this .V = v; this .adj = new Array(v); this .NIL = -1; this .time = 0; for (let i=0; i<v; ++i) this .adj[i] = []; } //Function to add an edge into the graph addEdge(v,w) { this .adj[v].push(w); //Note that the graph is undirected. this .adj[w].push(v); } // A recursive function that returns true if there is an articulation // point in given graph, otherwise returns false. // This function is almost same as isAPUtil() @ http://goo.gl/Me9Fw // u --> The vertex to be visited next // visited[] --> keeps track of visited vertices // disc[] --> Stores discovery times of visited vertices // parent[] --> Stores parent vertices in DFS tree isBCUtil(u,visited,disc,low,parent) { // Count of children in DFS Tree let children = 0; // Mark the current node as visited visited[u] = true ; // Initialize discovery time and low value disc[u] = low[u] = ++ this .time; // Go through all vertices adjacent to this for (let i of this .adj[u]) { let v = i; // v is current adjacent of u // If v is not visited yet, then make it a child of u // in DFS tree and recur for it if (!visited[v]) { children++; parent[v] = u; // check if subgraph rooted with v has an articulation point if ( this .isBCUtil(v, visited, disc, low, parent)) return true ; // Check if the subtree rooted with v has a connection to // one of the ancestors of u low[u] = Math.min(low[u], low[v]); // u is an articulation point in following cases // (1) u is root of DFS tree and has two or more children. if (parent[u] == this .NIL && children > 1) return true ; // (2) If u is not root and low value of one of its // child is more than discovery value of u. if (parent[u] != this .NIL && low[v] >= disc[u]) return true ; } // Update low value of u for parent function calls. else if (v != parent[u]) low[u] = Math.min(low[u], disc[v]); } return false ; } // The main function that returns true if graph is Biconnected, // otherwise false. It uses recursive function isBCUtil() isBC() { // Mark all the vertices as not visited let visited = new Array( this .V); let disc = new Array( this .V); let low = new Array( this .V); let parent = new Array( this .V); // Initialize parent and visited, and ap(articulation point) // arrays for (let i = 0; i < this .V; i++) { parent[i] = this .NIL; visited[i] = false ; } // Call the recursive helper function to find if there is an // articulation/ point in given graph. We do DFS traversal // starting from vertex 0 if ( this .isBCUtil(0, visited, disc, low, parent) == true ) return false ; // Now check whether the given graph is connected or not. // An undirected graph is connected if all vertices are // reachable from any starting point (we have taken 0 as // starting point) for (let i = 0; i < this .V; i++) if (visited[i] == false ) return false ; return true ; } } // Driver method // Create graphs given in above diagrams let g1 = new Graph(2); g1.addEdge(0, 1); if (g1.isBC()) document.write( "Yes<br>" ); else document.write( "No<br>" ); let g2 = new Graph(5); g2.addEdge(1, 0); g2.addEdge(0, 2); g2.addEdge(2, 1); g2.addEdge(0, 3); g2.addEdge(3, 4); g2.addEdge(2, 4); if (g2.isBC()) document.write( "Yes<br>" ); else document.write( "No<br>" ); let g3 = new Graph(3); g3.addEdge(0, 1); g3.addEdge(1, 2); if (g3.isBC()) document.write( "Yes<br>" ); else document.write( "No<br>" ); let g4 = new Graph(5); g4.addEdge(1, 0); g4.addEdge(0, 2); g4.addEdge(2, 1); g4.addEdge(0, 3); g4.addEdge(3, 4); if (g4.isBC()) document.write( "Yes<br>" ); else document.write( "No<br>" ); let g5= new Graph(3); g5.addEdge(0, 1); g5.addEdge(1, 2); g5.addEdge(2, 0); if (g5.isBC()) document.write( "Yes<br>" ); else document.write( "No<br>" ); // This code is contributed by avanitrachhadiya2155 </script> |
输出:
YesYesNoNoYes
时间复杂性: 上面的函数是一个带有附加数组的简单DFS。因此,对于图的邻接表表示,时间复杂度与DFS相同,DFS是O(V+E)。
参考资料: http://www.cs.purdue.edu/homes/ayg/CS251/slides/chap9d.pdf 如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写下评论。
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END