给定一个加权有向无环图和图中的一个源顶点,求从给定源到所有其他顶点的最短路径。
对于一般加权图,我们可以使用 贝尔曼-福特算法 .对于没有负权重的图,我们可以做得更好,并使用 Dijkstra算法 .对于有向无环图(DAG),我们能做得更好吗?我们可以计算DAG在O(V+E)时间内的单源最短距离。这个想法是使用 拓扑排序 . 我们初始化到所有顶点的距离为无限,到源的距离为0,然后我们找到了图的拓扑排序。 拓扑排序 图的线性顺序表示图的线性顺序(参见下文,图(b)是图(a)的线性表示)。一旦我们有了拓扑顺序(或线性表示),我们就会按照拓扑顺序逐个处理所有顶点。对于正在处理的每个顶点,我们使用当前顶点的距离更新其相邻顶点的距离。 下图取自 这 来源它显示了寻找最短路径的逐步过程。
下面是寻找最短距离的完整算法。 1) 初始化dist[]={INF,INF,…..]距离[s]=0,其中s是源顶点。 2) 创建所有顶点的拓扑顺序。 3) 按拓扑顺序对每个顶点u执行以下操作。 ………..对u的每个相邻顶点v执行以下操作 如果(距离[v]>距离[u]+重量(u,v)) 距离[v]=距离[u]+重量(u,v)
C++
// C++ program to find single source shortest paths for Directed Acyclic Graphs #include<iostream> #include <bits/stdc++.h> #define INF INT_MAX using namespace std; // Graph is represented using adjacency list. Every node of adjacency list // contains vertex number of the vertex to which edge connects. It also // contains weight of the edge class AdjListNode { int v; int weight; public : AdjListNode( int _v, int _w) { v = _v; weight = _w;} int getV() { return v; } int getWeight() { return weight; } }; // Class to represent a graph using adjacency list representation class Graph { int V; // No. of vertices' // Pointer to an array containing adjacency lists list<AdjListNode> *adj; // A function used by shortestPath void topologicalSortUtil( int v, bool visited[], stack< int > &Stack); public : Graph( int V); // Constructor // function to add an edge to graph void addEdge( int u, int v, int weight); // Finds shortest paths from given source vertex void shortestPath( int s); }; Graph::Graph( int V) { this ->V = V; adj = new list<AdjListNode>[V]; } void Graph::addEdge( int u, int v, int weight) { AdjListNode node(v, weight); adj[u].push_back(node); // Add v to u's list } // A recursive function used by shortestPath. See below link for details void Graph::topologicalSortUtil( int v, bool visited[], stack< int > &Stack) { // Mark the current node as visited visited[v] = true ; // Recur for all the vertices adjacent to this vertex list<AdjListNode>::iterator i; for (i = adj[v].begin(); i != adj[v].end(); ++i) { AdjListNode node = *i; if (!visited[node.getV()]) topologicalSortUtil(node.getV(), visited, Stack); } // Push current vertex to stack which stores topological sort Stack.push(v); } // The function to find shortest paths from given vertex. It uses recursive // topologicalSortUtil() to get topological sorting of given graph. void Graph::shortestPath( int s) { stack< int > Stack; int dist[V]; // Mark all the vertices as not visited bool *visited = new bool [V]; for ( int i = 0; i < V; i++) visited[i] = false ; // Call the recursive helper function to store Topological Sort // starting from all vertices one by one for ( int i = 0; i < V; i++) if (visited[i] == false ) topologicalSortUtil(i, visited, Stack); // Initialize distances to all vertices as infinite and distance // to source as 0 for ( int i = 0; i < V; i++) dist[i] = INF; dist[s] = 0; // Process vertices in topological order while (Stack.empty() == false ) { // Get the next vertex from topological order int u = Stack.top(); Stack.pop(); // Update distances of all adjacent vertices list<AdjListNode>::iterator i; if (dist[u] != INF) { for (i = adj[u].begin(); i != adj[u].end(); ++i) if (dist[i->getV()] > dist[u] + i->getWeight()) dist[i->getV()] = dist[u] + i->getWeight(); } } // Print the calculated shortest distances for ( int i = 0; i < V; i++) (dist[i] == INF)? cout << "INF " : cout << dist[i] << " " ; } // Driver program to test above functions int main() { // Create a graph given in the above diagram. Here vertex numbers are // 0, 1, 2, 3, 4, 5 with following mappings: // 0=r, 1=s, 2=t, 3=x, 4=y, 5=z Graph g(6); g.addEdge(0, 1, 5); g.addEdge(0, 2, 3); g.addEdge(1, 3, 6); g.addEdge(1, 2, 2); g.addEdge(2, 4, 4); g.addEdge(2, 5, 2); g.addEdge(2, 3, 7); g.addEdge(3, 4, -1); g.addEdge(4, 5, -2); int s = 1; cout << "Following are shortest distances from source " << s << " n" ; g.shortestPath(s); return 0; } |
JAVA
// Java program to find single source shortest paths in Directed Acyclic Graphs import java.io.*; import java.util.*; class ShortestPath { static final int INF=Integer.MAX_VALUE; class AdjListNode { private int v; private int weight; AdjListNode( int _v, int _w) { v = _v; weight = _w; } int getV() { return v; } int getWeight() { return weight; } } // Class to represent graph as an adjacency list of // nodes of type AdjListNode class Graph { private int V; private LinkedList<AdjListNode>adj[]; Graph( int v) { V=v; adj = new LinkedList[V]; for ( int i= 0 ; i<v; ++i) adj[i] = new LinkedList<AdjListNode>(); } void addEdge( int u, int v, int weight) { AdjListNode node = new AdjListNode(v,weight); adj[u].add(node); // Add v to u's list } // A recursive function used by shortestPath. // See below link for details void topologicalSortUtil( int v, Boolean visited[], Stack stack) { // Mark the current node as visited. visited[v] = true ; Integer i; // Recur for all the vertices adjacent to this vertex Iterator<AdjListNode> it = adj[v].iterator(); while (it.hasNext()) { AdjListNode node =it.next(); if (!visited[node.getV()]) topologicalSortUtil(node.getV(), visited, stack); } // Push current vertex to stack which stores result stack.push( new Integer(v)); } // The function to find shortest paths from given vertex. It // uses recursive topologicalSortUtil() to get topological // sorting of given graph. void shortestPath( int s) { Stack stack = new Stack(); int dist[] = new int [V]; // Mark all the vertices as not visited Boolean visited[] = new Boolean[V]; for ( int i = 0 ; i < V; i++) visited[i] = false ; // Call the recursive helper function to store Topological // Sort starting from all vertices one by one for ( int i = 0 ; i < V; i++) if (visited[i] == false ) topologicalSortUtil(i, visited, stack); // Initialize distances to all vertices as infinite and // distance to source as 0 for ( int i = 0 ; i < V; i++) dist[i] = INF; dist[s] = 0 ; // Process vertices in topological order while (stack.empty() == false ) { // Get the next vertex from topological order int u = ( int )stack.pop(); // Update distances of all adjacent vertices Iterator<AdjListNode> it; if (dist[u] != INF) { it = adj[u].iterator(); while (it.hasNext()) { AdjListNode i= it.next(); if (dist[i.getV()] > dist[u] + i.getWeight()) dist[i.getV()] = dist[u] + i.getWeight(); } } } // Print the calculated shortest distances for ( int i = 0 ; i < V; i++) { if (dist[i] == INF) System.out.print( "INF " ); else System.out.print( dist[i] + " " ); } } } // Method to create a new graph instance through an object // of ShortestPath class. Graph newGraph( int number) { return new Graph(number); } public static void main(String args[]) { // Create a graph given in the above diagram. Here vertex // numbers are 0, 1, 2, 3, 4, 5 with following mappings: // 0=r, 1=s, 2=t, 3=x, 4=y, 5=z ShortestPath t = new ShortestPath(); Graph g = t.newGraph( 6 ); g.addEdge( 0 , 1 , 5 ); g.addEdge( 0 , 2 , 3 ); g.addEdge( 1 , 3 , 6 ); g.addEdge( 1 , 2 , 2 ); g.addEdge( 2 , 4 , 4 ); g.addEdge( 2 , 5 , 2 ); g.addEdge( 2 , 3 , 7 ); g.addEdge( 3 , 4 , - 1 ); g.addEdge( 4 , 5 , - 2 ); int s = 1 ; System.out.println( "Following are shortest distances " + "from source " + s ); g.shortestPath(s); } } //This code is contributed by Aakash Hasija |
Python3
# Python program to find single source shortest paths # for Directed Acyclic Graphs Complexity :OV(V+E) from collections import defaultdict # Graph is represented using adjacency list. Every # node of adjacency list contains vertex number of # the vertex to which edge connects. It also contains # weight of the edge class Graph: def __init__( self ,vertices): self .V = vertices # No. of vertices # dictionary containing adjacency List self .graph = defaultdict( list ) # function to add an edge to graph def addEdge( self ,u,v,w): self .graph[u].append((v,w)) # A recursive function used by shortestPath def topologicalSortUtil( self ,v,visited,stack): # Mark the current node as visited. visited[v] = True # Recur for all the vertices adjacent to this vertex if v in self .graph.keys(): for node,weight in self .graph[v]: if visited[node] = = False : self .topologicalSortUtil(node,visited,stack) # Push current vertex to stack which stores topological sort stack.append(v) ''' The function to find shortest paths from given vertex. It uses recursive topologicalSortUtil() to get topological sorting of given graph.''' def shortestPath( self , s): # Mark all the vertices as not visited visited = [ False ] * self .V stack = [] # Call the recursive helper function to store Topological # Sort starting from source vertices for i in range ( self .V): if visited[i] = = False : self .topologicalSortUtil(s,visited,stack) # Initialize distances to all vertices as infinite and # distance to source as 0 dist = [ float ( "Inf" )] * ( self .V) dist[s] = 0 # Process vertices in topological order while stack: # Get the next vertex from topological order i = stack.pop() # Update distances of all adjacent vertices for node,weight in self .graph[i]: if dist[node] > dist[i] + weight: dist[node] = dist[i] + weight # Print the calculated shortest distances for i in range ( self .V): print (( "%d" % dist[i]) if dist[i] ! = float ( "Inf" ) else "Inf" ,end = " " ) g = Graph( 6 ) g.addEdge( 0 , 1 , 5 ) g.addEdge( 0 , 2 , 3 ) g.addEdge( 1 , 3 , 6 ) g.addEdge( 1 , 2 , 2 ) g.addEdge( 2 , 4 , 4 ) g.addEdge( 2 , 5 , 2 ) g.addEdge( 2 , 3 , 7 ) g.addEdge( 3 , 4 , - 1 ) g.addEdge( 4 , 5 , - 2 ) # source = 1 s = 1 print ( "Following are shortest distances from source %d " % s) g.shortestPath(s) # This code is contributed by Neelam Yadav |
C#
// C# program to find single source shortest // paths in Directed Acyclic Graphs using System; using System.Collections.Generic; public class ShortestPath { static readonly int INF = int .MaxValue; class AdjListNode { public int v; public int weight; public AdjListNode( int _v, int _w) { v = _v; weight = _w; } public int getV() { return v; } public int getWeight() { return weight; } } // Class to represent graph as an adjacency list of // nodes of type AdjListNode class Graph { public int V; public List<AdjListNode>[]adj; public Graph( int v) { V = v; adj = new List<AdjListNode>[V]; for ( int i = 0; i < v; ++i) adj[i] = new List<AdjListNode>(); } public void addEdge( int u, int v, int weight) { AdjListNode node = new AdjListNode(v,weight); adj[u].Add(node); // Add v to u's list } // A recursive function used by shortestPath. // See below link for details public void topologicalSortUtil( int v, Boolean []visited, Stack< int > stack) { // Mark the current node as visited. visited[v] = true ; // Recur for all the vertices adjacent to this vertex foreach (AdjListNode it in adj[v]) { AdjListNode node = it; if (!visited[node.getV()]) topologicalSortUtil(node.getV(), visited, stack); } // Push current vertex to stack which stores result stack.Push(v); } // The function to find shortest paths from given vertex. It // uses recursive topologicalSortUtil() to get topological // sorting of given graph. public void shortestPath( int s) { Stack< int > stack = new Stack< int >(); int []dist = new int [V]; // Mark all the vertices as not visited Boolean []visited = new Boolean[V]; for ( int i = 0; i < V; i++) visited[i] = false ; // Call the recursive helper function to store Topological // Sort starting from all vertices one by one for ( int i = 0; i < V; i++) if (visited[i] == false ) topologicalSortUtil(i, visited, stack); // Initialize distances to all vertices as infinite and // distance to source as 0 for ( int i = 0; i < V; i++) dist[i] = INF; dist[s] = 0; // Process vertices in topological order while (stack.Count != 0) { // Get the next vertex from topological order int u = ( int )stack.Pop(); // Update distances of all adjacent vertices if (dist[u] != INF) { foreach (AdjListNode it in adj[u]) { AdjListNode i= it; if (dist[i.getV()] > dist[u] + i.getWeight()) dist[i.getV()] = dist[u] + i.getWeight(); } } } // Print the calculated shortest distances for ( int i = 0; i < V; i++) { if (dist[i] == INF) Console.Write( "INF " ); else Console.Write( dist[i] + " " ); } } } // Method to create a new graph instance through an object // of ShortestPath class. Graph newGraph( int number) { return new Graph(number); } // Driver code public static void Main(String []args) { // Create a graph given in the above diagram. Here vertex // numbers are 0, 1, 2, 3, 4, 5 with following mappings: // 0=r, 1=s, 2=t, 3=x, 4=y, 5=z ShortestPath t = new ShortestPath(); Graph g = t.newGraph(6); g.addEdge(0, 1, 5); g.addEdge(0, 2, 3); g.addEdge(1, 3, 6); g.addEdge(1, 2, 2); g.addEdge(2, 4, 4); g.addEdge(2, 5, 2); g.addEdge(2, 3, 7); g.addEdge(3, 4, -1); g.addEdge(4, 5, -2); int s = 1; Console.WriteLine( "Following are shortest distances " + "from source " + s ); g.shortestPath(s); } } // This code is contributed by Rajput-Ji |
输出:
Following are shortest distances from source 1INF 0 2 6 5 3
时间复杂性: 拓扑排序的时间复杂度为O(V+E)。在找到拓扑顺序后,该算法处理所有顶点,并对每个顶点对所有相邻顶点进行循环。图中的所有相邻顶点都是O(E)。所以内部循环运行O(V+E)次。因此,该算法的总体时间复杂度为O(V+E)。 参考资料: http://www.utdallas.edu/~sizheng/CS4349。提单。d/L17。pdf 如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写评论