图中的关节点(或切割顶点)

无向连通图中的顶点是一个连接点(或切割顶点),如果移除它(以及穿过它的边)会断开图的连接。连接点代表连接网络中的漏洞——单点故障会将网络拆分为两个或多个组件。它们对于设计可靠的网络很有用。

null

对于一个非连通的无向图,连接点是一个顶点移除,这会增加连接组件的数量。

下面是一些连接点被红色包围的示例图。

Articulation Points or Cut Vertices in a Graph Articulation Points or Cut Vertices in a Graph

Articulation Points or Cut Vertices in a Graph

如何找到给定图形中的所有连接点? 一种简单的方法是逐个移除所有顶点,然后查看移除顶点是否会导致图断开连接。下面是连通图的简单方法步骤。 1) 对于每个顶点v,执行以下操作 …..a) 从图中删除v …b)查看图表是否保持连接(我们可以使用BFS或DFS) …..c) 将v添加回图表 对于用邻接表表示的图,上述方法的时间复杂度为O(V*(V+E))。我们能做得更好吗?

寻找所有关节点(AP)的O(V+E)算法 其想法是使用DFS(深度优先搜索)。在DFS中,我们以树的形式跟踪顶点,称为DFS树。在DFS树中,一个顶点u是另一个顶点v的父节点,如果v是由u发现的(显然v是图中u的邻接点)。在DFS树中,如果以下两个条件之一为真,则顶点u为连接点。 1) u是DFS树的根,它至少有两个子树。 2) u不是DFS树的根,并且它有一个子v,因此在以v为根的子树中,没有一个顶点具有u的一个祖先(在DFS树中)的后缘。

下图显示了与上述相同的点,另外一点是DFS树中的叶子永远不能成为连接点。

leaf in DFS Tree can never be an articulation point

我们使用额外的代码对给定的图进行DFS遍历,以找到连接点(AP)。在DFS遍历中,我们维护一个parent[]数组,其中parent[u]存储顶点u的父元素。在上述两种情况中,第一种情况很容易检测。对于每个顶点,计算子节点。如果当前访问的顶点u为根(父[u]为零),并且有两个以上的子节点,请打印它。

如何处理第二个案件?第二种情况更为棘手。我们维护一个数组disc[]来存储顶点的发现时间。对于每个节点u,我们需要找出最早访问的顶点(发现时间最短的顶点),该顶点可以从以u为根的子树中到达。因此,我们维护一个额外的数组low[],其定义如下。

low[u] = min(disc[u], disc[w]) where w is an ancestor of u and there is a back edge from some descendant of u to w.

下面是Tarjan寻找关节点算法的实现。

C++

// C++ program to find articulation points in an undirected graph
#include <bits/stdc++.h>
using namespace std;
// A recursive function that find articulation
// points using DFS traversal
// adj[] --> Adjacency List representation of the graph
// u --> The vertex to be visited next
// visited[] --> keeps track of visited vertices
// disc[] --> Stores discovery times of visited vertices
// low[] -- >> earliest visited vertex (the vertex with minimum
// discovery time) that can be reached from subtree
// rooted with current vertex
// parent --> Stores the parent vertex in DFS tree
// isAP[] --> Stores articulation points
void APUtil(vector< int > adj[], int u, bool visited[],
int disc[], int low[], int & time , int parent,
bool isAP[])
{
// Count of children in DFS Tree
int children = 0;
// Mark the current node as visited
visited[u] = true ;
// Initialize discovery time and low value
disc[u] = low[u] = ++ time ;
// Go through all vertices adjacent to this
for ( auto v : adj[u]) {
// If v is not visited yet, then make it a child of u
// in DFS tree and recur for it
if (!visited[v]) {
children++;
APUtil(adj, v, visited, disc, low, time , u, isAP);
// Check if the subtree rooted with v has
// a connection to one of the ancestors of u
low[u] = min(low[u], low[v]);
// If u is not root and low value of one of
// its child is more than discovery value of u.
if (parent != -1 && low[v] >= disc[u])
isAP[u] = true ;
}
// Update low value of u for parent function calls.
else if (v != parent)
low[u] = min(low[u], disc[v]);
}
// If u is root of DFS tree and has two or more children.
if (parent == -1 && children > 1)
isAP[u] = true ;
}
void AP(vector< int > adj[], int V)
{
int disc[V] = { 0 };
int low[V];
bool visited[V] = { false };
bool isAP[V] = { false };
int time = 0, par = -1;
// Adding this loop so that the
// code works even if we are given
// disconnected graph
for ( int u = 0; u < V; u++)
if (!visited[u])
APUtil(adj, u, visited, disc, low,
time , par, isAP);
// Printing the APs
for ( int u = 0; u < V; u++)
if (isAP[u] == true )
cout << u << " " ;
}
// Utility function to add an edge
void addEdge(vector< int > adj[], int u, int v)
{
adj[u].push_back(v);
adj[v].push_back(u);
}
int main()
{
// Create graphs given in above diagrams
cout << "Articulation points in first graph " ;
int V = 5;
vector< int > adj1[V];
addEdge(adj1, 1, 0);
addEdge(adj1, 0, 2);
addEdge(adj1, 2, 1);
addEdge(adj1, 0, 3);
addEdge(adj1, 3, 4);
AP(adj1, V);
cout << "Articulation points in second graph " ;
V = 4;
vector< int > adj2[V];
addEdge(adj2, 0, 1);
addEdge(adj2, 1, 2);
addEdge(adj2, 2, 3);
AP(adj2, V);
cout << "Articulation points in third graph " ;
V = 7;
vector< int > adj3[V];
addEdge(adj3, 0, 1);
addEdge(adj3, 1, 2);
addEdge(adj3, 2, 0);
addEdge(adj3, 1, 3);
addEdge(adj3, 1, 4);
addEdge(adj3, 1, 6);
addEdge(adj3, 3, 5);
addEdge(adj3, 4, 5);
AP(adj3, V);
return 0;
}


JAVA

// A Java program to find articulation
// points in an undirected graph
import java.util.*;
class Graph {
static int time;
static void addEdge(ArrayList<ArrayList<Integer> > adj, int u, int v)
{
adj.get(u).add(v);
adj.get(v).add(u);
}
static void APUtil(ArrayList<ArrayList<Integer> > adj, int u,
boolean visited[], int disc[], int low[],
int parent, boolean isAP[])
{
// Count of children in DFS Tree
int children = 0 ;
// Mark the current node as visited
visited[u] = true ;
// Initialize discovery time and low value
disc[u] = low[u] = ++time;
// Go through all vertices adjacent to this
for (Integer v : adj.get(u)) {
// If v is not visited yet, then make it a child of u
// in DFS tree and recur for it
if (!visited[v]) {
children++;
APUtil(adj, v, visited, disc, low, u, isAP);
// Check if the subtree rooted with v has
// a connection to one of the ancestors of u
low[u] = Math.min(low[u], low[v]);
// If u is not root and low value of one of
// its child is more than discovery value of u.
if (parent != - 1 && low[v] >= disc[u])
isAP[u] = true ;
}
// Update low value of u for parent function calls.
else if (v != parent)
low[u] = Math.min(low[u], disc[v]);
}
// If u is root of DFS tree and has two or more children.
if (parent == - 1 && children > 1 )
isAP[u] = true ;
}
static void AP(ArrayList<ArrayList<Integer> > adj, int V)
{
boolean [] visited = new boolean [V];
int [] disc = new int [V];
int [] low = new int [V];
boolean [] isAP = new boolean [V];
int time = 0 , par = - 1 ;
// Adding this loop so that the
// code works even if we are given
// disconnected graph
for ( int u = 0 ; u < V; u++)
if (visited[u] == false )
APUtil(adj, u, visited, disc, low, par, isAP);
for ( int u = 0 ; u < V; u++)
if (isAP[u] == true )
System.out.print(u + " " );
System.out.println();
}
public static void main(String[] args)
{
// Creating first example graph
int V = 5 ;
ArrayList<ArrayList<Integer> > adj1 =
new ArrayList<ArrayList<Integer> >(V);
for ( int i = 0 ; i < V; i++)
adj1.add( new ArrayList<Integer>());
addEdge(adj1, 1 , 0 );
addEdge(adj1, 0 , 2 );
addEdge(adj1, 2 , 1 );
addEdge(adj1, 0 , 3 );
addEdge(adj1, 3 , 4 );
System.out.println( "Articulation points in first graph" );
AP(adj1, V);
// Creating second example graph
V = 4 ;
ArrayList<ArrayList<Integer> > adj2 =
new ArrayList<ArrayList<Integer> >(V);
for ( int i = 0 ; i < V; i++)
adj2.add( new ArrayList<Integer>());
addEdge(adj2, 0 , 1 );
addEdge(adj2, 1 , 2 );
addEdge(adj2, 2 , 3 );
System.out.println( "Articulation points in second graph" );
AP(adj2, V);
// Creating third example graph
V = 7 ;
ArrayList<ArrayList<Integer> > adj3 =
new ArrayList<ArrayList<Integer> >(V);
for ( int i = 0 ; i < V; i++)
adj3.add( new ArrayList<Integer>());
addEdge(adj3, 0 , 1 );
addEdge(adj3, 1 , 2 );
addEdge(adj3, 2 , 0 );
addEdge(adj3, 1 , 3 );
addEdge(adj3, 1 , 4 );
addEdge(adj3, 1 , 6 );
addEdge(adj3, 3 , 5 );
addEdge(adj3, 4 , 5 );
System.out.println( "Articulation points in third graph" );
AP(adj3, V);
}
}


Python3

# Python program to find articulation points in an undirected graph
from collections import defaultdict
# This class represents an undirected graph
# using adjacency list representation
class Graph:
def __init__( self , vertices):
self .V = vertices # No. of vertices
self .graph = defaultdict( list ) # default dictionary to store graph
self .Time = 0
# function to add an edge to graph
def addEdge( self , u, v):
self .graph[u].append(v)
self .graph[v].append(u)
'''A recursive function that find articulation points
using DFS traversal
u --> The vertex to be visited next
visited[] --> keeps track of visited vertices
disc[] --> Stores discovery times of visited vertices
parent[] --> Stores parent vertices in DFS tree
ap[] --> Store articulation points'''
def APUtil( self , u, visited, ap, parent, low, disc):
# Count of children in current node
children = 0
# Mark the current node as visited and print it
visited[u] = True
# Initialize discovery time and low value
disc[u] = self .Time
low[u] = self .Time
self .Time + = 1
# Recur for all the vertices adjacent to this vertex
for v in self .graph[u]:
# If v is not visited yet, then make it a child of u
# in DFS tree and recur for it
if visited[v] = = False :
parent[v] = u
children + = 1
self .APUtil(v, visited, ap, parent, low, disc)
# Check if the subtree rooted with v has a connection to
# one of the ancestors of u
low[u] = min (low[u], low[v])
# u is an articulation point in following cases
# (1) u is root of DFS tree and has two or more children.
if parent[u] = = - 1 and children > 1 :
ap[u] = True
#(2) If u is not root and low value of one of its child is more
# than discovery value of u.
if parent[u] ! = - 1 and low[v] > = disc[u]:
ap[u] = True
# Update low value of u for parent function calls
elif v ! = parent[u]:
low[u] = min (low[u], disc[v])
# The function to do DFS traversal. It uses recursive APUtil()
def AP( self ):
# Mark all the vertices as not visited
# and Initialize parent and visited,
# and ap(articulation point) arrays
visited = [ False ] * ( self .V)
disc = [ float ( "Inf" )] * ( self .V)
low = [ float ( "Inf" )] * ( self .V)
parent = [ - 1 ] * ( self .V)
ap = [ False ] * ( self .V) # To store articulation points
# Call the recursive helper function
# to find articulation points
# in DFS tree rooted with vertex 'i'
for i in range ( self .V):
if visited[i] = = False :
self .APUtil(i, visited, ap, parent, low, disc)
for index, value in enumerate (ap):
if value = = True : print (index,end = " " )
# Create a graph given in the above diagram
g1 = Graph( 5 )
g1.addEdge( 1 , 0 )
g1.addEdge( 0 , 2 )
g1.addEdge( 2 , 1 )
g1.addEdge( 0 , 3 )
g1.addEdge( 3 , 4 )
print ( "Articulation points in first graph " )
g1.AP()
g2 = Graph( 4 )
g2.addEdge( 0 , 1 )
g2.addEdge( 1 , 2 )
g2.addEdge( 2 , 3 )
print ( "Articulation points in second graph " )
g2.AP()
g3 = Graph ( 7 )
g3.addEdge( 0 , 1 )
g3.addEdge( 1 , 2 )
g3.addEdge( 2 , 0 )
g3.addEdge( 1 , 3 )
g3.addEdge( 1 , 4 )
g3.addEdge( 1 , 6 )
g3.addEdge( 3 , 5 )
g3.addEdge( 4 , 5 )
print ( "Articulation points in third graph " )
g3.AP()
# This code is contributed by Neelam Yadav


C#

// A C# program to find articulation
// points in an undirected graph
using System;
using System.Collections.Generic;
// This class represents an undirected graph
// using adjacency list representation
public class Graph {
private int V; // No. of vertices
// Array of lists for Adjacency List Representation
private List< int >[] adj;
int time = 0;
static readonly int NIL = -1;
// Constructor
Graph( int v)
{
V = v;
adj = new List< int >[v];
for ( int i = 0; i < v; ++i)
adj[i] = new List< int >();
}
// Function to add an edge into the graph
void addEdge( int v, int w)
{
adj[v].Add(w); // Add w to v's list.
adj[w].Add(v); // Add v to w's list
}
// A recursive function that find articulation points using DFS
// u --> The vertex to be visited next
// visited[] --> keeps track of visited vertices
// disc[] --> Stores discovery times of visited vertices
// parent[] --> Stores parent vertices in DFS tree
// ap[] --> Store articulation points
void APUtil( int u, bool [] visited, int [] disc,
int [] low, int [] parent, bool [] ap)
{
// Count of children in DFS Tree
int children = 0;
// Mark the current node as visited
visited[u] = true ;
// Initialize discovery time and low value
disc[u] = low[u] = ++time;
// Go through all vertices adjacent to this
foreach ( int i in adj[u])
{
int v = i; // v is current adjacent of u
// If v is not visited yet, then make it a child of u
// in DFS tree and recur for it
if (!visited[v]) {
children++;
parent[v] = u;
APUtil(v, visited, disc, low, parent, ap);
// Check if the subtree rooted with v has
// a connection to one of the ancestors of u
low[u] = Math.Min(low[u], low[v]);
// u is an articulation point in following cases
// (1) u is root of DFS tree and has two or more children.
if (parent[u] == NIL && children > 1)
ap[u] = true ;
// (2) If u is not root and low value of one of its child
// is more than discovery value of u.
if (parent[u] != NIL && low[v] >= disc[u])
ap[u] = true ;
}
// Update low value of u for parent function calls.
else if (v != parent[u])
low[u] = Math.Min(low[u], disc[v]);
}
}
// The function to do DFS traversal.
// It uses recursive function APUtil()
void AP()
{
// Mark all the vertices as not visited
bool [] visited = new bool [V];
int [] disc = new int [V];
int [] low = new int [V];
int [] parent = new int [V];
bool [] ap = new bool [V]; // To store articulation points
// Initialize parent and visited, and
// ap(articulation point) arrays
for ( int i = 0; i < V; i++) {
parent[i] = NIL;
visited[i] = false ;
ap[i] = false ;
}
// Call the recursive helper function to find articulation
// points in DFS tree rooted with vertex 'i'
for ( int i = 0; i < V; i++)
if (visited[i] == false )
APUtil(i, visited, disc, low, parent, ap);
// Now ap[] contains articulation points, print them
for ( int i = 0; i < V; i++)
if (ap[i] == true )
Console.Write(i + " " );
}
// Driver method
public static void Main(String[] args)
{
// Create graphs given in above diagrams
Console.WriteLine( "Articulation points in first graph " );
Graph g1 = new Graph(5);
g1.addEdge(1, 0);
g1.addEdge(0, 2);
g1.addEdge(2, 1);
g1.addEdge(0, 3);
g1.addEdge(3, 4);
g1.AP();
Console.WriteLine();
Console.WriteLine( "Articulation points in Second graph" );
Graph g2 = new Graph(4);
g2.addEdge(0, 1);
g2.addEdge(1, 2);
g2.addEdge(2, 3);
g2.AP();
Console.WriteLine();
Console.WriteLine( "Articulation points in Third graph " );
Graph g3 = new Graph(7);
g3.addEdge(0, 1);
g3.addEdge(1, 2);
g3.addEdge(2, 0);
g3.addEdge(1, 3);
g3.addEdge(1, 4);
g3.addEdge(1, 6);
g3.addEdge(3, 5);
g3.addEdge(4, 5);
g3.AP();
}
}
// This code is contributed by PrinciRaj1992


Javascript

<script>
// A Javascript program to find articulation points in an undirected graph
// This class represents an undirected graph using adjacency list
// representation
class Graph
{
// Constructor
constructor(v)
{
this .V = v;
this .adj = new Array(v);
this .NIL = -1;
this .time = 0;
for (let i=0; i<v; ++i)
this .adj[i] = [];
}
//Function to add an edge into the graph
addEdge(v, w)
{
this .adj[v].push(w); // Add w to v's list.
this .adj[w].push(v); //Add v to w's list
}
// A recursive function that find articulation points using DFS
// u --> The vertex to be visited next
// visited[] --> keeps track of visited vertices
// disc[] --> Stores discovery times of visited vertices
// parent[] --> Stores parent vertices in DFS tree
// ap[] --> Store articulation points
APUtil(u, visited, disc, low, parent, ap)
{
// Count of children in DFS Tree
let children = 0;
// Mark the current node as visited
visited[u] = true ;
// Initialize discovery time and low value
disc[u] = low[u] = ++ this .time;
// Go through all vertices adjacent to this
for (let i of this .adj[u])
{
let v = i; // v is current adjacent of u
// If v is not visited yet, then make it a child of u
// in DFS tree and recur for it
if (!visited[v])
{
children++;
parent[v] = u;
this .APUtil(v, visited, disc, low, parent, ap);
// Check if the subtree rooted with v has a connection to
// one of the ancestors of u
low[u]  = Math.min(low[u], low[v]);
// u is an articulation point in following cases
// (1) u is root of DFS tree and has two or more children.
if (parent[u] == this .NIL && children > 1)
ap[u] = true ;
// (2) If u is not root and low value of one of its child
// is more than discovery value of u.
if (parent[u] != this .NIL && low[v] >= disc[u])
ap[u] = true ;
}
// Update low value of u for parent function calls.
else if (v != parent[u])
low[u]  = Math.min(low[u], disc[v]);
}
}
// The function to do DFS traversal. It uses recursive function APUtil()
AP()
{
// Mark all the vertices as not visited
let visited = new Array( this .V);
let disc = new Array( this .V);
let low = new Array( this .V);
let parent = new Array( this .V);
let ap = new Array( this .V); // To store articulation points
// Initialize parent and visited, and ap(articulation point)
// arrays
for (let i = 0; i < this .V; i++)
{
parent[i] = this .NIL;
visited[i] = false ;
ap[i] = false ;
}
// Call the recursive helper function to find articulation
// points in DFS tree rooted with vertex 'i'
for (let i = 0; i < this .V; i++)
if (visited[i] == false )
this .APUtil(i, visited, disc, low, parent, ap);
// Now ap[] contains articulation points, print them
for (let i = 0; i < this .V; i++)
if (ap[i] == true )
document.write(i+ " " );
}
}
// Driver method
// Create graphs given in above diagrams
document.write( "Articulation points in first graph  <br>" );
let g1 = new Graph(5);
g1.addEdge(1, 0);
g1.addEdge(0, 2);
g1.addEdge(2, 1);
g1.addEdge(0, 3);
g1.addEdge(3, 4);
g1.AP();
document.write( "<br>" );
document.write( "Articulation points in Second graph <br>" );
let g2 = new Graph(4);
g2.addEdge(0, 1);
g2.addEdge(1, 2);
g2.addEdge(2, 3);
g2.AP();
document.write( "<br>" );
document.write( "Articulation points in Third graph  <br>" );
let g3 = new Graph(7);
g3.addEdge(0, 1);
g3.addEdge(1, 2);
g3.addEdge(2, 0);
g3.addEdge(1, 3);
g3.addEdge(1, 4);
g3.addEdge(1, 6);
g3.addEdge(3, 5);
g3.addEdge(4, 5);
g3.AP();
// This code is contributed by avanitrachhadiya2155
</script>


输出:

Articulation points in first graph0 3Articulation points in second graph1 2Articulation points in third graph1

时间复杂性: 上面的函数是带有附加数组的简单DFS。因此,对于图的邻接表表示,时间复杂度与DFS相同,DFS是O(V+E)。

参考资料: https://www.cs.washington.edu/education/courses/421/04su/slides/artic.pdf http://www.slideshare.net/TraianRebedea/algorithm-design-and-complexity-course-8 http://faculty.simpson.edu/lydia.sinapova/www/cmsc250/LN250_Weiss/L25-Connectivity.htm 如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写下评论。

© 版权声明
THE END
喜欢就支持一下吧
点赞12 分享