给定一个正整数 N .任务是找到1 2. + 2 2. + 3 2. + ….. + N 2. . 例如:
null
Input : N = 4Output : 3012 + 22 + 32 + 42= 1 + 4 + 9 + 16= 30Input : N = 5Output : 55
方法1:O(N) 这个想法是从1到n运行一个循环,对于每个i,1<=i<=n,找到i 2. 总而言之。
JAVA
// Java Program to find sum of // square of first n natural numbers import java.io.*; class GFG { // Return the sum of square of first n natural numbers static int squaresum( int n) { // Iterate i from 1 and n // finding square of i and add to sum. int sum = 0 ; for ( int i = 1 ; i <= n; i++) sum += (i * i); return sum; } // Driven Program public static void main(String args[]) throws IOException { int n = 4 ; System.out.println(squaresum(n)); } } /*This code is contributed by Nikita Tiwari.*/ |
输出:
30
方法2:O(1)
证据:
We know,(k + 1)3 = k3 + 3 * k2 + 3 * k + 1We can write the above identity for k from 1 to n:23 = 13 + 3 * 12 + 3 * 1 + 1 ......... (1)33 = 23 + 3 * 22 + 3 * 2 + 1 ......... (2)43 = 33 + 3 * 32 + 3 * 3 + 1 ......... (3)53 = 43 + 3 * 42 + 3 * 4 + 1 ......... (4)...n3 = (n - 1)3 + 3 * (n - 1)2 + 3 * (n - 1) + 1 ......... (n - 1)(n + 1)3 = n3 + 3 * n2 + 3 * n + 1 ......... (n)Putting equation (n - 1) in equation n,(n + 1)3 = (n - 1)3 + 3 * (n - 1)2 + 3 * (n - 1) + 1 + 3 * n2 + 3 * n + 1 = (n - 1)3 + 3 * (n2 + (n - 1)2) + 3 * ( n + (n - 1) ) + 1 + 1By putting all equation, we get(n + 1)3 = 13 + 3 * Σ k2 + 3 * Σ k + Σ 1n3 + 3 * n2 + 3 * n + 1 = 1 + 3 * Σ k2 + 3 * (n * (n + 1))/2 + nn3 + 3 * n2 + 3 * n = 3 * Σ k2 + 3 * (n * (n + 1))/2 + nn3 + 3 * n2 + 2 * n - 3 * (n * (n + 1))/2 = 3 * Σ k2n * (n2 + 3 * n + 2) - 3 * (n * (n + 1))/2 = 3 * Σ k2n * (n + 1) * (n + 2) - 3 * (n * (n + 1))/2 = 3 * Σ k2n * (n + 1) * (n + 2 - 3/2) = 3 * Σ k2n * (n + 1) * (2 * n + 1)/2 = 3 * Σ k2n * (n + 1) * (2 * n + 1)/6 = Σ k2
JAVA
// Java Program to find sum // of square of first n // natural numbers import java.io.*; class GFG { // Return the sum of square // of first n natural numbers static int squaresum( int n) { return (n * (n + 1 ) * ( 2 * n + 1 )) / 6 ; } // Driven Program public static void main(String args[]) throws IOException { int n = 4 ; System.out.println(squaresum(n)); } } /*This code si contributed by Nikita Tiwari.*/ |
输出:
30
避免提前溢出: 对于较大的n,(n*(n+1)*(2*n+1))的值将溢出。利用n*(n+1)必须能被2整除的事实,我们可以在一定程度上避免溢出。
JAVA
// Java Program to find sum of square of first // n natural numbers. This program avoids // overflow upto some extent for large value // of n. import java.io.*; import java.util.*; class GFG { // Return the sum of square of first n natural // numbers public static int squaresum( int n) { return (n * (n + 1 ) / 2 ) * ( 2 * n + 1 ) / 3 ; } public static void main(String[] args) { int n = 4 ; System.out.println(squaresum(n)); } } // Code Contributed by Mohit Gupta_OMG <(0_o)> |
输出:
30
请参阅完整的文章 前n个自然数的平方和 更多细节!
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END