前n个自然数平方和的Java程序

给定一个正整数 N .任务是找到1 2. + 2 2. + 3 2. + ….. + N 2. . 例如:

null
Input : N = 4Output : 3012 + 22 + 32 + 42= 1 + 4 + 9 + 16= 30Input : N = 5Output : 55

方法1:O(N) 这个想法是从1到n运行一个循环,对于每个i,1<=i<=n,找到i 2. 总而言之。

JAVA

// Java Program to find sum of
// square of first n natural numbers
import java.io.*;
class GFG {
// Return the sum of square of first n natural numbers
static int squaresum( int n)
{
// Iterate i from 1 and n
// finding square of i and add to sum.
int sum = 0 ;
for ( int i = 1 ; i <= n; i++)
sum += (i * i);
return sum;
}
// Driven Program
public static void main(String args[]) throws IOException
{
int n = 4 ;
System.out.println(squaresum(n));
}
}
/*This code is contributed by Nikita Tiwari.*/


输出:

30

方法2:O(1)

图片[1]-前n个自然数平方和的Java程序-yiteyi-C++库

证据:

We know,(k + 1)3 = k3 + 3 * k2 + 3 * k + 1We can write the above identity for k from 1 to n:23 = 13 + 3 * 12 + 3 * 1 + 1 ......... (1)33 = 23 + 3 * 22 + 3 * 2 + 1 ......... (2)43 = 33 + 3 * 32 + 3 * 3 + 1 ......... (3)53 = 43 + 3 * 42 + 3 * 4 + 1 ......... (4)...n3 = (n - 1)3 + 3 * (n - 1)2 + 3 * (n - 1) + 1 ......... (n - 1)(n + 1)3 = n3 + 3 * n2 + 3 * n + 1 ......... (n)Putting equation (n - 1) in equation n,(n + 1)3 = (n - 1)3 + 3 * (n - 1)2 + 3 * (n - 1) + 1 + 3 * n2 + 3 * n + 1         = (n - 1)3 + 3 * (n2 + (n - 1)2) + 3 * ( n + (n - 1) ) + 1 + 1By putting all equation, we get(n + 1)3 = 13 + 3 * Σ k2 + 3 * Σ k + Σ 1n3 + 3 * n2 + 3 * n + 1 = 1 + 3 * Σ k2 + 3 * (n * (n + 1))/2 + nn3 + 3 * n2 + 3 * n = 3 * Σ k2 + 3 * (n * (n + 1))/2 + nn3 + 3 * n2 + 2 * n - 3 * (n * (n + 1))/2 = 3 * Σ k2n * (n2 + 3 * n + 2) - 3 * (n * (n + 1))/2 = 3 * Σ k2n * (n + 1) * (n + 2) - 3 * (n * (n + 1))/2 = 3 * Σ k2n * (n + 1) * (n + 2 - 3/2) = 3 * Σ k2n * (n + 1) * (2 * n + 1)/2  = 3 * Σ k2n * (n + 1) * (2 * n + 1)/6  = Σ k2

JAVA

// Java Program to find sum
// of square of first n
// natural numbers
import java.io.*;
class GFG {
// Return the sum of square
// of first n natural numbers
static int squaresum( int n)
{
return (n * (n + 1 ) * ( 2 * n + 1 )) / 6 ;
}
// Driven Program
public static void main(String args[])
throws IOException
{
int n = 4 ;
System.out.println(squaresum(n));
}
}
/*This code si contributed by Nikita Tiwari.*/


输出:

30

避免提前溢出: 对于较大的n,(n*(n+1)*(2*n+1))的值将溢出。利用n*(n+1)必须能被2整除的事实,我们可以在一定程度上避免溢出。

JAVA

// Java Program to find sum of square of first
// n natural numbers. This program avoids
// overflow upto some extent for large value
// of n.
import java.io.*;
import java.util.*;
class GFG {
// Return the sum of square of first n natural
// numbers
public static int squaresum( int n)
{
return (n * (n + 1 ) / 2 ) * ( 2 * n + 1 ) / 3 ;
}
public static void main(String[] args)
{
int n = 4 ;
System.out.println(squaresum(n));
}
}
// Code Contributed by Mohit Gupta_OMG <(0_o)>


输出:

30

请参阅完整的文章 前n个自然数的平方和 更多细节!

© 版权声明
THE END
喜欢就支持一下吧
点赞9 分享