给定一个正整数 N .任务是找到1 2. + 2 2. + 3 2. + ….. + N 2. .
null
例如:
Input : N = 4 Output : 30 12 + 22 + 32 + 42 = 1 + 4 + 9 + 16 = 30 Input : N = 5 Output : 55
方法1:O(N) 这个想法是从1到n运行一个循环,对于每个i,1<=i<=n,找到i 2. 总而言之。
# Python3 Program to # find sum of square # of first n natural # numbers # Return the sum of # square of first n # natural numbers def squaresum(n) : # Iterate i from 1 # and n finding # square of i and # add to sum. sm = 0 for i in range ( 1 , n + 1 ) : sm = sm + (i * i) return sm # Driven Program n = 4 print (squaresum(n)) # This code is contributed by Nikita Tiwari.*/ |
输出:
30
方法2:O(1)
证据:
We know, (k + 1)3 = k3 + 3 * k2 + 3 * k + 1 We can write the above identity for k from 1 to n: 23 = 13 + 3 * 12 + 3 * 1 + 1 ......... (1) 33 = 23 + 3 * 22 + 3 * 2 + 1 ......... (2) 43 = 33 + 3 * 32 + 3 * 3 + 1 ......... (3) 53 = 43 + 3 * 42 + 3 * 4 + 1 ......... (4) ... n3 = (n - 1)3 + 3 * (n - 1)2 + 3 * (n - 1) + 1 ......... (n - 1) (n + 1)3 = n3 + 3 * n2 + 3 * n + 1 ......... (n) Putting equation (n - 1) in equation n, (n + 1)3 = (n - 1)3 + 3 * (n - 1)2 + 3 * (n - 1) + 1 + 3 * n2 + 3 * n + 1 = (n - 1)3 + 3 * (n2 + (n - 1)2) + 3 * ( n + (n - 1) ) + 1 + 1 By putting all equation, we get (n + 1)3 = 13 + 3 * Σ k2 + 3 * Σ k + Σ 1 n3 + 3 * n2 + 3 * n + 1 = 1 + 3 * Σ k2 + 3 * (n * (n + 1))/2 + n n3 + 3 * n2 + 3 * n = 3 * Σ k2 + 3 * (n * (n + 1))/2 + n n3 + 3 * n2 + 2 * n - 3 * (n * (n + 1))/2 = 3 * Σ k2 n * (n2 + 3 * n + 2) - 3 * (n * (n + 1))/2 = 3 * Σ k2 n * (n + 1) * (n + 2) - 3 * (n * (n + 1))/2 = 3 * Σ k2 n * (n + 1) * (n + 2 - 3/2) = 3 * Σ k2 n * (n + 1) * (2 * n + 1)/2 = 3 * Σ k2 n * (n + 1) * (2 * n + 1)/6 = Σ k2
# Python3 Program to # find sum of square # of first n natural # numbers # Return the sum of # square of first n # natural numbers def squaresum(n) : return (n * (n + 1 ) * ( 2 * n + 1 )) / / 6 # Driven Program n = 4 print (squaresum(n)) #This code is contributed by Nikita Tiwari. |
输出:
30
避免提前溢出: 对于较大的n,(n*(n+1)*(2*n+1))的值将溢出。利用n*(n+1)必须能被2整除的事实,我们可以在一定程度上避免溢出。
# Python Program to find sum of square of first # n natural numbers. This program avoids # overflow upto some extent for large value # of n.y def squaresum(n): return (n * (n + 1 ) / 2 ) * ( 2 * n + 1 ) / 3 # main() n = 4 print (squaresum(n)); # Code Contributed by Mohit Gupta_OMG <(0_o)> |
输出:
30
请参阅完整的文章 前n个自然数的平方和 更多细节!
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END