第一n自然数平方和的C++程序

给定一个正整数 N .任务是找到1 2. + 2 2. + 3 2. + ….. + N 2. .

null

例如:

Input : N = 4
Output : 30
12 + 22 + 32 + 42
= 1 + 4 + 9 + 16
= 30

Input : N = 5
Output : 55

方法1:O(N) 这个想法是从1到n运行一个循环,对于每个i,1<=i<=n,找到i 2. 总而言之。

CPP

// CPP Program to find sum of square of first n natural numbers
#include <bits/stdc++.h>
using namespace std;
// Return the sum of the square
// of first n natural numbers
int squaresum( int n)
{
// Iterate i from 1 and n
// finding square of i and add to sum.
int sum = 0;
for ( int i = 1; i <= n; i++)
sum += (i * i);
return sum;
}
// Driven Program
int main()
{
int n = 4;
cout << squaresum(n) << endl;
return 0;
}


输出:

30

方法2:O(1) 图片[1]-第一n自然数平方和的C++程序-yiteyi-C++库 证据:

We know,
(k + 1)3 = k3 + 3 * k2 + 3 * k + 1
We can write the above identity for k from 1 to n:
23 = 13 + 3 * 12 + 3 * 1 + 1 ......... (1)
33 = 23 + 3 * 22 + 3 * 2 + 1 ......... (2)
43 = 33 + 3 * 32 + 3 * 3 + 1 ......... (3)
53 = 43 + 3 * 42 + 3 * 4 + 1 ......... (4)
...
n3 = (n - 1)3 + 3 * (n - 1)2 + 3 * (n - 1) + 1 ......... (n - 1)
(n + 1)3 = n3 + 3 * n2 + 3 * n + 1 ......... (n)

Putting equation (n - 1) in equation n,
(n + 1)3 = (n - 1)3 + 3 * (n - 1)2 + 3 * (n - 1) + 1 + 3 * n2 + 3 * n + 1
         = (n - 1)3 + 3 * (n2 + (n - 1)2) + 3 * ( n + (n - 1) ) + 1 + 1

By putting all equation, we get
(n + 1)3 = 13 + 3 * Σ k2 + 3 * Σ k + Σ 1
n3 + 3 * n2 + 3 * n + 1 = 1 + 3 * Σ k2 + 3 * (n * (n + 1))/2 + n
n3 + 3 * n2 + 3 * n = 3 * Σ k2 + 3 * (n * (n + 1))/2 + n
n3 + 3 * n2 + 2 * n - 3 * (n * (n + 1))/2 = 3 * Σ k2
n * (n2 + 3 * n + 2) - 3 * (n * (n + 1))/2 = 3 * Σ k2
n * (n + 1) * (n + 2) - 3 * (n * (n + 1))/2 = 3 * Σ k2
n * (n + 1) * (n + 2 - 3/2) = 3 * Σ k2
n * (n + 1) * (2 * n + 1)/2  = 3 * Σ k2
n * (n + 1) * (2 * n + 1)/6  = Σ k2

CPP

// CPP Program to find sum
// of square of first n
// natural numbers
#include <bits/stdc++.h>
using namespace std;
// Return the sum of square of
// first n natural numbers
int squaresum( int n)
{
return (n * (n + 1) * (2 * n + 1)) / 6;
}
// Driven Program
int main()
{
int n = 4;
cout << squaresum(n) << endl;
return 0;
}


输出:

30

避免提前溢出: 对于较大的n,(n*(n+1)*(2*n+1))的值将溢出。利用n*(n+1)必须能被2整除的事实,我们可以在一定程度上避免溢出。

CPP

// CPP Program to find sum of square of first
// n natural numbers. This program avoids
// overflow upto some extent for large value
// of n.
#include <bits/stdc++.h>
using namespace std;
// Return the sum of square of first n natural
// numbers
int squaresum( int n)
{
return (n * (n + 1) / 2) * (2 * n + 1) / 3;
}
// Driven Program
int main()
{
int n = 4;
cout << squaresum(n) << endl;
return 0;
}


输出:

30

请参阅完整的文章 前n个自然数的平方和 更多细节!

© 版权声明
THE END
喜欢就支持一下吧
点赞8 分享