希普索尔

堆排序是一种基于二进制堆数据结构的基于比较的排序技术。它类似于选择排序,我们首先找到最小元素,然后将最小元素放在开头。我们对剩下的元素重复同样的过程。

null

是什么 二进制堆 ? 让我们首先定义一个完整的二叉树。一个完整的二叉树是一个二叉树,在这个二叉树中,除了最后一个之外,每个级别都被完全填充,所有节点都尽可能地左移(源代码) 维基百科 ) A. 二进制堆 是一个完整的二叉树,其中项目以特殊顺序存储,使得父节点中的值大于(或小于)其两个子节点中的值。前者称为最大堆,后者称为最小堆。堆可以用二叉树或数组表示。

为什么要对二进制堆使用基于数组的表示? 由于二进制堆是一个完整的二叉树,因此可以很容易地将其表示为数组,并且基于数组的表示是节省空间的。如果父节点存储在索引I处,则左子节点可以按2*I+1计算,右子节点可以按2*I+2计算(假设索引从0开始)。

如何“heapify”一棵树?

将二叉树重塑为堆数据结构的过程称为“heapify”。二叉树是一种最多有两个子节点的树数据结构。如果一个节点的子节点是“heapify”,那么只有“heapify”过程可以应用于该节点。堆应该始终是一个完整的二叉树。

从一个完整的二叉树开始,我们可以通过在堆的所有非叶元素上运行一个名为“heapify”的函数,将其修改为最大堆。i、 e.“heapify”使用递归。

“heapify”的算法:

heapify(array)   Root = array[0]   Largest = largest( array[0] , array [2 * 0 + 1]. array[2 * 0 + 2])   if(Root != Largest)       Swap(Root, Largest)

“heapify”的例子:

        30(0)                        /                70(1)   50(2)Child (70(1)) is greater than the parent (30(0))Swap Child (70(1)) with the parent (30(0))        70(0)                        /                30(1)   50(2)

按递增顺序排序的堆排序算法: 1. 从输入数据构建一个最大堆。 2. 此时,最大的项存储在堆的根。将其替换为堆的最后一项,然后将堆的大小减少1。最后,修剪树根。 3. 当堆的大小大于1时,重复步骤2。

如何构建堆? 只有对节点的子节点进行了Heapify,Heapify过程才能应用于该节点。因此,必须按照自底向上的顺序进行heapification。 让我们通过一个例子来理解:

Input data: 4, 10, 3, 5, 1         4(0)        /        10(1)   3(2)    /    5(3)    1(4)The numbers in bracket represent the indices in the array representation of data.Applying heapify procedure to index 1:         4(0)        /       10(1)    3(2)    /   5(3)    1(4)Applying heapify procedure to index 0:        10(0)        /       5(1)  3(2)    /    4(3)    1(4)The heapify procedure calls itself recursively to build heap in top down manner.

C++

// C++ program for implementation of Heap Sort
#include <iostream>
using namespace std;
// To heapify a subtree rooted with node i which is
// an index in arr[]. n is size of heap
void heapify( int arr[], int n, int i)
{
int largest = i; // Initialize largest as root
int l = 2 * i + 1; // left = 2*i + 1
int r = 2 * i + 2; // right = 2*i + 2
// If left child is larger than root
if (l < n && arr[l] > arr[largest])
largest = l;
// If right child is larger than largest so far
if (r < n && arr[r] > arr[largest])
largest = r;
// If largest is not root
if (largest != i) {
swap(arr[i], arr[largest]);
// Recursively heapify the affected sub-tree
heapify(arr, n, largest);
}
}
// main function to do heap sort
void heapSort( int arr[], int n)
{
// Build heap (rearrange array)
for ( int i = n / 2 - 1; i >= 0; i--)
heapify(arr, n, i);
// One by one extract an element from heap
for ( int i = n - 1; i > 0; i--) {
// Move current root to end
swap(arr[0], arr[i]);
// call max heapify on the reduced heap
heapify(arr, i, 0);
}
}
/* A utility function to print array of size n */
void printArray( int arr[], int n)
{
for ( int i = 0; i < n; ++i)
cout << arr[i] << " " ;
cout << "" ;
}
// Driver code
int main()
{
int arr[] = { 12, 11, 13, 5, 6, 7 };
int n = sizeof (arr) / sizeof (arr[0]);
heapSort(arr, n);
cout << "Sorted array is " ;
printArray(arr, n);
}


JAVA

// Java program for implementation of Heap Sort
public class HeapSort {
public void sort( int arr[])
{
int n = arr.length;
// Build heap (rearrange array)
for ( int i = n / 2 - 1 ; i >= 0 ; i--)
heapify(arr, n, i);
// One by one extract an element from heap
for ( int i = n - 1 ; i > 0 ; i--) {
// Move current root to end
int temp = arr[ 0 ];
arr[ 0 ] = arr[i];
arr[i] = temp;
// call max heapify on the reduced heap
heapify(arr, i, 0 );
}
}
// To heapify a subtree rooted with node i which is
// an index in arr[]. n is size of heap
void heapify( int arr[], int n, int i)
{
int largest = i; // Initialize largest as root
int l = 2 * i + 1 ; // left = 2*i + 1
int r = 2 * i + 2 ; // right = 2*i + 2
// If left child is larger than root
if (l < n && arr[l] > arr[largest])
largest = l;
// If right child is larger than largest so far
if (r < n && arr[r] > arr[largest])
largest = r;
// If largest is not root
if (largest != i) {
int swap = arr[i];
arr[i] = arr[largest];
arr[largest] = swap;
// Recursively heapify the affected sub-tree
heapify(arr, n, largest);
}
}
/* A utility function to print array of size n */
static void printArray( int arr[])
{
int n = arr.length;
for ( int i = 0 ; i < n; ++i)
System.out.print(arr[i] + " " );
System.out.println();
}
// Driver code
public static void main(String args[])
{
int arr[] = { 12 , 11 , 13 , 5 , 6 , 7 };
int n = arr.length;
HeapSort ob = new HeapSort();
ob.sort(arr);
System.out.println( "Sorted array is" );
printArray(arr);
}
}


Python3

# Python program for implementation of heap Sort
# To heapify subtree rooted at index i.
# n is size of heap
def heapify(arr, n, i):
largest = i # Initialize largest as root
l = 2 * i + 1 # left = 2*i + 1
r = 2 * i + 2 # right = 2*i + 2
# See if left child of root exists and is
# greater than root
if l < n and arr[largest] < arr[l]:
largest = l
# See if right child of root exists and is
# greater than root
if r < n and arr[largest] < arr[r]:
largest = r
# Change root, if needed
if largest ! = i:
arr[i], arr[largest] = arr[largest], arr[i] # swap
# Heapify the root.
heapify(arr, n, largest)
# The main function to sort an array of given size
def heapSort(arr):
n = len (arr)
# Build a maxheap.
for i in range (n / / 2 - 1 , - 1 , - 1 ):
heapify(arr, n, i)
# One by one extract elements
for i in range (n - 1 , 0 , - 1 ):
arr[i], arr[ 0 ] = arr[ 0 ], arr[i] # swap
heapify(arr, i, 0 )
# Driver code
arr = [ 12 , 11 , 13 , 5 , 6 , 7 ]
heapSort(arr)
n = len (arr)
print ( "Sorted array is" )
for i in range (n):
print ( "%d" % arr[i],end = " " )
# This code is contributed by Mohit Kumra


C#

// C# program for implementation of Heap Sort
using System;
public class HeapSort {
public void sort( int [] arr)
{
int n = arr.Length;
// Build heap (rearrange array)
for ( int i = n / 2 - 1; i >= 0; i--)
heapify(arr, n, i);
// One by one extract an element from heap
for ( int i = n - 1; i > 0; i--) {
// Move current root to end
int temp = arr[0];
arr[0] = arr[i];
arr[i] = temp;
// call max heapify on the reduced heap
heapify(arr, i, 0);
}
}
// To heapify a subtree rooted with node i which is
// an index in arr[]. n is size of heap
void heapify( int [] arr, int n, int i)
{
int largest = i; // Initialize largest as root
int l = 2 * i + 1; // left = 2*i + 1
int r = 2 * i + 2; // right = 2*i + 2
// If left child is larger than root
if (l < n && arr[l] > arr[largest])
largest = l;
// If right child is larger than largest so far
if (r < n && arr[r] > arr[largest])
largest = r;
// If largest is not root
if (largest != i) {
int swap = arr[i];
arr[i] = arr[largest];
arr[largest] = swap;
// Recursively heapify the affected sub-tree
heapify(arr, n, largest);
}
}
/* A utility function to print array of size n */
static void printArray( int [] arr)
{
int n = arr.Length;
for ( int i = 0; i < n; ++i)
Console.Write(arr[i] + " " );
Console.Read();
}
// Driver code
public static void Main()
{
int [] arr = { 12, 11, 13, 5, 6, 7 };
int n = arr.Length;
HeapSort ob = new HeapSort();
ob.sort(arr);
Console.WriteLine( "Sorted array is" );
printArray(arr);
}
}
// This code is contributed
// by Akanksha Rai(Abby_akku)


PHP

<?php
// Php program for implementation of Heap Sort
// To heapify a subtree rooted with node i which is
// an index in arr[]. n is size of heap
function heapify(& $arr , $n , $i )
{
$largest = $i ; // Initialize largest as root
$l = 2* $i + 1; // left = 2*i + 1
$r = 2* $i + 2; // right = 2*i + 2
// If left child is larger than root
if ( $l < $n && $arr [ $l ] > $arr [ $largest ])
$largest = $l ;
// If right child is larger than largest so far
if ( $r < $n && $arr [ $r ] > $arr [ $largest ])
$largest = $r ;
// If largest is not root
if ( $largest != $i )
{
$swap = $arr [ $i ];
$arr [ $i ] = $arr [ $largest ];
$arr [ $largest ] = $swap ;
// Recursively heapify the affected sub-tree
heapify( $arr , $n , $largest );
}
}
// main function to do heap sort
function heapSort(& $arr , $n )
{
// Build heap (rearrange array)
for ( $i = $n / 2 - 1; $i >= 0; $i --)
heapify( $arr , $n , $i );
// One by one extract an element from heap
for ( $i = $n -1; $i > 0; $i --)
{
// Move current root to end
$temp = $arr [0];
$arr [0] = $arr [ $i ];
$arr [ $i ] = $temp ;
// call max heapify on the reduced heap
heapify( $arr , $i , 0);
}
}
/* A utility function to print array of size n */
function printArray(& $arr , $n )
{
for ( $i = 0; $i < $n ; ++ $i )
echo ( $arr [ $i ]. " " ) ;
}
// Driver program
$arr = array (12, 11, 13, 5, 6, 7);
$n = sizeof( $arr )/sizeof( $arr [0]);
heapSort( $arr , $n );
echo 'Sorted array is ' . "" ;
printArray( $arr , $n );
// This code is contributed by Shivi_Aggarwal
?>


Javascript

<script>
// JavaScript program for implementation
// of Heap Sort
function sort( arr)
{
var n = arr.length;
// Build heap (rearrange array)
for ( var i = Math.floor(n / 2) - 1; i >= 0; i--)
heapify(arr, n, i);
// One by one extract an element from heap
for ( var i = n - 1; i > 0; i--) {
// Move current root to end
var temp = arr[0];
arr[0] = arr[i];
arr[i] = temp;
// call max heapify on the reduced heap
heapify(arr, i, 0);
}
}
// To heapify a subtree rooted with node i which is
// an index in arr[]. n is size of heap
function heapify(arr, n, i)
{
var largest = i; // Initialize largest as root
var l = 2 * i + 1; // left = 2*i + 1
var r = 2 * i + 2; // right = 2*i + 2
// If left child is larger than root
if (l < n && arr[l] > arr[largest])
largest = l;
// If right child is larger than largest so far
if (r < n && arr[r] > arr[largest])
largest = r;
// If largest is not root
if (largest != i) {
var swap = arr[i];
arr[i] = arr[largest];
arr[largest] = swap;
// Recursively heapify the affected sub-tree
heapify(arr, n, largest);
}
}
/* A utility function to print array of size n */
function printArray(arr)
{
var n = arr.length;
for ( var i = 0; i < n; ++i)
document.write(arr[i] + " " );
}
var arr = [ 5, 12, 11, 13, 4, 6, 7 ];
var n = arr.length;
sort(arr);
document.write( "Sorted array is <br>" );
printArray(arr, n);
// This code is contributed by SoumikMondal
</script>


输出

Sorted array is 5 6 7 11 12 13 

在这里 是以前的C代码供参考。

笔记: 堆排序是一种就地算法。 它的典型实现并不稳定,但可以使其稳定(参见 )

时间复杂性: heapify的时间复杂度为O(Logn)。createAndBuildHeap()的时间复杂度为O(n),堆排序的总体时间复杂度为O(nLogn)。

heapsort的优势——

  • 效率—— 执行堆排序所需的时间以对数方式增加,而随着要排序的项目数的增加,其他算法可能会以指数方式增长。这种排序算法非常有效。
  • 内存使用– 内存使用是最小的,因为除了保存要排序的项目的初始列表所需的内容外,它不需要额外的内存空间来工作
  • 简单—— 它比其他同样有效的排序算法更容易理解,因为它不使用递归等高级计算机科学概念

HeapSort的应用 1. 对接近排序(或K排序)的数组进行排序 2. k数组中的最大(或最小)元素 堆排序算法的用途有限,因为快速排序和合并排序在实践中更好。然而,堆数据结构本身被大量使用。看见 堆数据结构的应用 https://youtu.be/MtQL_ll5KhQ 快照:

scene00505

scene00793

scene01081

scene01297

scene01513

scene02449

堆排序测验

Geeksforgeks/Geeksquick上的其他排序算法: 快速排序 , 选择排序 , 气泡排序 , 插入排序 , 合并排序 , 堆排序 , 快速排序 , 基数排序 , 计数排序 , 斗式分拣 , 贝壳类 , 梳排序 , 鸽子洞排序

分类编码实践。

如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写下评论。

© 版权声明
THE END
喜欢就支持一下吧
点赞9 分享