B-树中的插入操作

以前的职位 ,我们引入了B-树。我们还讨论了search()和traverse()函数。 本文将讨论insert()操作。新密钥始终插入到叶节点。让要插入的键为k。像BST一样,我们从根开始向下遍历,直到到达叶节点。一旦我们到达一个叶节点,我们就将密钥插入该叶节点。与BST不同,我们对节点可以包含的键的数量有一个预定义的范围。因此,在向节点插入密钥之前,我们要确保节点有额外的空间。

null

在插入密钥之前,如何确保节点具有密钥可用的空间? 我们使用一个名为splitChild()的操作来拆分节点的子节点。请参见下图以了解拆分。在下图中,x的子y被拆分为两个节点y和z。请注意,splitChild操作会向上移动一个键,这就是B树长大的原因,而BST会向下生长。

BTreeSplit

如上所述,要插入一个新密钥,我们从根到叶。在向下遍历节点之前,我们首先检查节点是否已满。如果节点已满,我们将其拆分以创建空间。下面是完整的算法。

插入 1) 将x初始化为根。 2) 虽然x不是叶子,但要做到以下几点 .. (a) 找到下一步要遍历的x的子对象。让这孩子安静点。 .. b) 如果y未满,则将x更改为指向y。 .. c) 如果y已满,将其拆分,并将x更改为指向y的两个部分之一。如果k小于y中的中间关键点,则将x设置为y的第一部分。否则设置为y的第二部分。拆分y时,将关键点从y移动到其父x。 3) 当x为leaf时,步骤2中的循环停止。x必须有空间容纳1个额外的密钥,因为我们已经提前拆分了所有节点。所以简单地把k插入x。

请注意,该算法遵循Cormen手册。它实际上是一种主动插入算法,在进入节点之前,如果节点已满,我们将其拆分。之前拆分的优点是,我们不会遍历一个节点两次。如果我们在进入一个节点之前不拆分它,并且只在插入一个新密钥时拆分它(被动),那么我们可能会再次从叶到根遍历所有节点。当从根到叶的路径上的所有节点都已满时,就会发生这种情况。因此,当我们来到叶节点时,我们将其拆分并向上移动一个关键点。向上移动关键点将导致父节点分裂(因为父节点已满)。这种级联效应在这种主动插入算法中从未发生过。不过,这种主动插入有一个缺点,我们可能会进行不必要的拆分。

让我们用一个最小度为3的示例树和一个初始空B树中的整数序列10、20、30、40、50、60、70、80和90来理解该算法。 最初root为NULL。让我们先插入10。

Btree1

现在让我们插入20、30、40和50。它们都将插入根目录中,因为节点可以容纳的最大密钥数为2*t–1,即5。

BTree2Ins

现在让我们插入60。由于根节点已满,它将首先拆分为两个,然后将60个节点插入相应的子节点。

BTreeIns3

现在让我们插入70和80。这些新键将被插入到相应的叶中,而不进行任何拆分。

BTreeIns4

现在让我们插入90。此插入将导致拆分。中键将转到父键。

BTreeIns6

下面是C++实现上述主动算法。

C++

// C++ program for B-Tree insertion
#include<iostream>
using namespace std;
// A BTree node
class BTreeNode
{
int *keys; // An array of keys
int t; // Minimum degree (defines the range for number of keys)
BTreeNode **C; // An array of child pointers
int n; // Current number of keys
bool leaf; // Is true when node is leaf. Otherwise false
public :
BTreeNode( int _t, bool _leaf); // Constructor
// A utility function to insert a new key in the subtree rooted with
// this node. The assumption is, the node must be non-full when this
// function is called
void insertNonFull( int k);
// A utility function to split the child y of this node. i is index of y in
// child array C[].  The Child y must be full when this function is called
void splitChild( int i, BTreeNode *y);
// A function to traverse all nodes in a subtree rooted with this node
void traverse();
// A function to search a key in the subtree rooted with this node.
BTreeNode *search( int k); // returns NULL if k is not present.
// Make BTree friend of this so that we can access private members of this
// class in BTree functions
friend class BTree;
};
// A BTree
class BTree
{
BTreeNode *root; // Pointer to root node
int t; // Minimum degree
public :
// Constructor (Initializes tree as empty)
BTree( int _t)
{  root = NULL;  t = _t; }
// function to traverse the tree
void traverse()
{ if (root != NULL) root->traverse(); }
// function to search a key in this tree
BTreeNode* search( int k)
{ return (root == NULL)? NULL : root->search(k); }
// The main function that inserts a new key in this B-Tree
void insert( int k);
};
// Constructor for BTreeNode class
BTreeNode::BTreeNode( int t1, bool leaf1)
{
// Copy the given minimum degree and leaf property
t = t1;
leaf = leaf1;
// Allocate memory for maximum number of possible keys
// and child pointers
keys = new int [2*t-1];
C = new BTreeNode *[2*t];
// Initialize the number of keys as 0
n = 0;
}
// Function to traverse all nodes in a subtree rooted with this node
void BTreeNode::traverse()
{
// There are n keys and n+1 children, traverse through n keys
// and first n children
int i;
for (i = 0; i < n; i++)
{
// If this is not leaf, then before printing key[i],
// traverse the subtree rooted with child C[i].
if (leaf == false )
C[i]->traverse();
cout << " " << keys[i];
}
// Print the subtree rooted with last child
if (leaf == false )
C[i]->traverse();
}
// Function to search key k in subtree rooted with this node
BTreeNode *BTreeNode::search( int k)
{
// Find the first key greater than or equal to k
int i = 0;
while (i < n && k > keys[i])
i++;
// If the found key is equal to k, return this node
if (keys[i] == k)
return this ;
// If key is not found here and this is a leaf node
if (leaf == true )
return NULL;
// Go to the appropriate child
return C[i]->search(k);
}
// The main function that inserts a new key in this B-Tree
void BTree::insert( int k)
{
// If tree is empty
if (root == NULL)
{
// Allocate memory for root
root = new BTreeNode(t, true );
root->keys[0] = k; // Insert key
root->n = 1; // Update number of keys in root
}
else // If tree is not empty
{
// If root is full, then tree grows in height
if (root->n == 2*t-1)
{
// Allocate memory for new root
BTreeNode *s = new BTreeNode(t, false );
// Make old root as child of new root
s->C[0] = root;
// Split the old root and move 1 key to the new root
s->splitChild(0, root);
// New root has two children now.  Decide which of the
// two children is going to have new key
int i = 0;
if (s->keys[0] < k)
i++;
s->C[i]->insertNonFull(k);
// Change root
root = s;
}
else // If root is not full, call insertNonFull for root
root->insertNonFull(k);
}
}
// A utility function to insert a new key in this node
// The assumption is, the node must be non-full when this
// function is called
void BTreeNode::insertNonFull( int k)
{
// Initialize index as index of rightmost element
int i = n-1;
// If this is a leaf node
if (leaf == true )
{
// The following loop does two things
// a) Finds the location of new key to be inserted
// b) Moves all greater keys to one place ahead
while (i >= 0 && keys[i] > k)
{
keys[i+1] = keys[i];
i--;
}
// Insert the new key at found location
keys[i+1] = k;
n = n+1;
}
else // If this node is not leaf
{
// Find the child which is going to have the new key
while (i >= 0 && keys[i] > k)
i--;
// See if the found child is full
if (C[i+1]->n == 2*t-1)
{
// If the child is full, then split it
splitChild(i+1, C[i+1]);
// After split, the middle key of C[i] goes up and
// C[i] is splitted into two.  See which of the two
// is going to have the new key
if (keys[i+1] < k)
i++;
}
C[i+1]->insertNonFull(k);
}
}
// A utility function to split the child y of this node
// Note that y must be full when this function is called
void BTreeNode::splitChild( int i, BTreeNode *y)
{
// Create a new node which is going to store (t-1) keys
// of y
BTreeNode *z = new BTreeNode(y->t, y->leaf);
z->n = t - 1;
// Copy the last (t-1) keys of y to z
for ( int j = 0; j < t-1; j++)
z->keys[j] = y->keys[j+t];
// Copy the last t children of y to z
if (y->leaf == false )
{
for ( int j = 0; j < t; j++)
z->C[j] = y->C[j+t];
}
// Reduce the number of keys in y
y->n = t - 1;
// Since this node is going to have a new child,
// create space of new child
for ( int j = n; j >= i+1; j--)
C[j+1] = C[j];
// Link the new child to this node
C[i+1] = z;
// A key of y will move to this node. Find the location of
// new key and move all greater keys one space ahead
for ( int j = n-1; j >= i; j--)
keys[j+1] = keys[j];
// Copy the middle key of y to this node
keys[i] = y->keys[t-1];
// Increment count of keys in this node
n = n + 1;
}
// Driver program to test above functions
int main()
{
BTree t(3); // A B-Tree with minimum degree 3
t.insert(10);
t.insert(20);
t.insert(5);
t.insert(6);
t.insert(12);
t.insert(30);
t.insert(7);
t.insert(17);
cout << "Traversal of the constructed tree is " ;
t.traverse();
int k = 6;
(t.search(k) != NULL)? cout << "Present" : cout << "Not Present" ;
k = 15;
(t.search(k) != NULL)? cout << "Present" : cout << "Not Present" ;
return 0;
}


输出:

Traversal of the constructed tree is  5 6 7 10 12 17 20 30PresentNot Present

参考资料: 算法导论第三版由Clifford Stein、Thomas H.Cormen、Charles E.Leiserson、Ronald L.Rivest编写 http://www.cs.utexas.edu/users/djimenez/utsa/cs3343/lecture17.html 如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写下评论。

© 版权声明
THE END
喜欢就支持一下吧
点赞6 分享