计算数组中的素数

给定一个由N个正整数组成的数组arr[]。任务是编写一个程序来计算给定数组中素元素的数量。 例子 :

null
Input: arr[] = {1, 3, 4, 5, 7}Output: 3There are three primes, 3, 5 and 7Input: arr[] = {1, 2, 3, 4, 5, 6, 7}Output: 4

天真的方法 :一个简单的解决方案是遍历数组并保持 检查每个元素是否为素数 或者不,同时保持素数元素的计数。 有效的方法 :使用 埃拉托斯坦筛 并将其存储在散列中。现在遍历数组,并使用哈希表查找素数元素的计数。 以下是上述方法的实施情况:

C++

// CPP program to find count of
// primes in given array.
#include <bits/stdc++.h>
using namespace std;
// Function to find count of prime
int primeCount( int arr[], int n)
{
// Find maximum value in the array
int max_val = *max_element(arr, arr+n);
// USE SIEVE TO FIND ALL PRIME NUMBERS LESS
// THAN OR EQUAL TO max_val
// Create a boolean array "prime[0..n]". A
// value in prime[i] will finally be false
// if i is Not a prime, else true.
vector< bool > prime(max_val + 1, true );
// Remaining part of SIEVE
prime[0] = false ;
prime[1] = false ;
for ( int p = 2; p * p <= max_val; p++) {
// If prime[p] is not changed, then
// it is a prime
if (prime[p] == true ) {
// Update all multiples of p
for ( int i = p * 2; i <= max_val; i += p)
prime[i] = false ;
}
}
// Find all primes in arr[]
int count = 0;
for ( int i = 0; i < n; i++)
if (prime[arr[i]])
count++;
return count;
}
// Driver code
int main()
{
int arr[] = { 1, 2, 3, 4, 5, 6, 7 };
int n = sizeof (arr) / sizeof (arr[0]);
cout << primeCount(arr, n);
return 0;
}


JAVA

import java.util.Arrays;
import java.util.Vector;
// Java program to find count of
// primes in given array.
class GFG
{
// Function to find count of prime
static int primeCount( int arr[], int n)
{
// Find maximum value in the array
//.*max_element(arr, arr+n);
int max_val = Arrays.stream(arr).max().getAsInt();
// USE SIEVE TO FIND ALL PRIME NUMBERS LESS
// THAN OR EQUAL TO max_val
// Create a boolean array "prime[0..n]". A
// value in prime[i] will finally be false
// if i is Not a prime, else true.
Boolean[] prime = new Boolean[max_val + 1 ];
for ( int i = 0 ; i < max_val + 1 ; i++)
{
prime[i] = true ;
}
// Remaining part of SIEVE
prime[ 0 ] = false ;
prime[ 1 ] = false ;
for ( int p = 2 ; p * p <= max_val; p++)
{
// If prime[p] is not changed, then
// it is a prime
if (prime[p] == true )
{
// Update all multiples of p
for ( int i = p * 2 ; i <= max_val; i += p)
{
prime[i] = false ;
}
}
}
// Find all primes in arr[]
int count = 0 ;
for ( int i = 0 ; i < n; i++)
{
if (prime[arr[i]])
{
count++;
}
}
return count;
}
// Driver code
public static void main(String[] args)
{
int arr[] = { 1 , 2 , 3 , 4 , 5 , 6 , 7 };
int n = arr.length;
System.out.println(primeCount(arr, n));
}
}
// This code is contributed by
// PrinciRaj1992


Python3

# Python 3 program to find count of
# primes in given array.
from math import sqrt
# Function to find count of prime
def primeCount(arr, n):
# Find maximum value in the array
max_val = arr[ 0 ];
for i in range ( len (arr)):
if (arr[i] > max_val):
max_val = arr[i]
# USE SIEVE TO FIND ALL PRIME NUMBERS
# LESS THAN OR EQUAL TO max_val
# Create a boolean array "prime[0..n]".
# A value in prime[i] will finally be
# false if i is Not a prime, else true.
prime = [ True for i in range (max_val + 1 )]
# Remaining part of SIEVE
prime[ 0 ] = False
prime[ 1 ] = False
k = int (sqrt(max_val)) + 1
for p in range ( 2 , k, 1 ):
# If prime[p] is not changed,
# then it is a prime
if (prime[p] = = True ):
# Update all multiples of p
for i in range (p * 2 , max_val + 1 , p):
prime[i] = False
# Find all primes in arr[]
count = 0
for i in range ( 0 , n, 1 ):
if (prime[arr[i]]):
count + = 1
return count
# Driver code
if __name__ = = '__main__' :
arr = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 ]
n = len (arr)
print (primeCount(arr, n))
# This code is contributed by
# Shashank_Sharma


C#

// C# program to find count of
// primes in given array.
using System;
using System.Linq;
class GFG
{
// Function to find count of prime
static int primeCount( int []arr, int n)
{
// Find maximum value in the array
//.*max_element(arr, arr+n);
int max_val = arr.Max();
// USE SIEVE TO FIND ALL PRIME NUMBERS LESS
// THAN OR EQUAL TO max_val
// Create a boolean array "prime[0..n]". A
// value in prime[i] will finally be false
// if i is Not a prime, else true.
Boolean[] prime = new Boolean[max_val + 1];
for ( int i = 0; i < max_val + 1; i++)
{
prime[i] = true ;
}
// Remaining part of SIEVE
prime[0] = false ;
prime[1] = false ;
for ( int p = 2; p * p <= max_val; p++)
{
// If prime[p] is not changed, then
// it is a prime
if (prime[p] == true )
{
// Update all multiples of p
for ( int i = p * 2; i <= max_val; i += p)
{
prime[i] = false ;
}
}
}
// Find all primes in arr[]
int count = 0;
for ( int i = 0; i < n; i++)
{
if (prime[arr[i]])
{
count++;
}
}
return count;
}
// Driver code
public static void Main()
{
int []arr = {1, 2, 3, 4, 5, 6, 7};
int n = arr.Length;
Console.WriteLine(primeCount(arr, n));
}
}
//This code is contributed by 29AjayKumar


PHP

<?php
// PHP program to find count
// of primes in given array.
// Function to find count of prime
function primeCount( $arr , $n )
{
// Find maximum value in the array
$max_val = max( $arr );
// Use Sieve to find all Prime Numbers
// less than or equal to max_val
// Create a boolean array "prime[0..n]". A
// value in prime[i] will finally be false
// if i is Not a prime, else true.
$prime = array_fill (0, $max_val + 1, true);
// Remaining part of SIEVE
$prime [0] = false;
$prime [1] = false;
for ( $p = 2; $p * $p <= $max_val ; $p ++)
{
// If prime[p] is not changed,
// then it is a prime
if ( $prime [ $p ] == true)
{
// Update all multiples of p
for ( $i = $p * 2;
$i <= $max_val ; $i += $p )
$prime [ $i ] = false;
}
}
// Find all primes in arr[]
$count = 0;
for ( $i = 0; $i < $n ; $i ++)
if ( $prime [ $arr [ $i ]])
$count ++;
return $count ;
}
// Driver code
$arr = array (1, 2, 3, 4, 5, 6, 7 );
$n = sizeof( $arr );
echo primeCount( $arr , $n );
// This code is contributed by mits
?>


Javascript

<script>
// Javascript program to find count
// of primes in given array.
// Function to find count of prime
function primeCount(arr, n)
{
// Find maximum value in the array
let max_val = arr.sort((a, b) => b - a)[0];
// Use Sieve to find all Prime Numbers
// less than or equal to max_val
// Create a boolean array "prime[0..n]". A
// value in prime[i] will finally be false
// if i is Not a prime, else true.
let prime = new Array(max_val + 1).fill( true );
// Remaining part of SIEVE
prime[0] = false ;
prime[1] = false ;
for (let p = 2; p * p <= max_val; p++)
{
// If prime[p] is not changed,
// then it is a prime
if (prime[p] == true )
{
// Update all multiples of p
for (let i = p * 2;
i <= max_val; i += p)
prime[i] = false ;
}
}
// Find all primes in arr[]
let count = 0;
for (let i = 0; i < n; i++)
if (prime[arr[i]])
count++;
return count;
}
// Driver code
let arr = new Array(1, 2, 3, 4, 5, 6, 7 );
let n = arr.length;
document.write(primeCount(arr, n));
// This code is contributed by _saurabh_jaiswal
</script>


输出:

4

© 版权声明
THE END
喜欢就支持一下吧
点赞13 分享