给定一棵二叉树,返回整棵树的倾斜度。树节点的倾斜度定义为所有左子树节点值和所有右子树节点值之和之间的绝对差。空节点被指定为零。因此,整个树的倾斜度被定义为所有节点的倾斜度之和。 例如:
null
Input : 1 / 2 3Output : 1Explanation: Tilt of node 2 : 0Tilt of node 3 : 0Tilt of node 1 : |2-3| = 1Tilt of binary tree : 0 + 0 + 1 = 1Input : 4 / 2 9 / 3 5 7Output : 15Explanation: Tilt of node 3 : 0Tilt of node 5 : 0Tilt of node 7 : 0Tilt of node 2 : |3-5| = 2Tilt of node 9 : |0-7| = 7Tilt of node 4 : |(3+5+2)-(9+7)| = 6Tilt of binary tree : 0 + 0 + 0 + 2 + 7 + 6 = 15
其思想是递归遍历树。在遍历过程中,我们跟踪两件事:当前节点下的子树的总和和当前节点的倾斜。需要求和来计算父对象的倾斜。
C++
// CPP Program to find Tilt of Binary Tree #include <bits/stdc++.h> using namespace std; /* A binary tree node has data, pointer to left child and a pointer to right child */ struct Node { int val; struct Node *left, *right; }; /* Recursive function to calculate Tilt of whole tree */ int traverse(Node* root, int * tilt) { if (!root) return 0; // Compute tilts of left and right subtrees // and find sums of left and right subtrees int left = traverse(root->left, tilt); int right = traverse(root->right, tilt); // Add current tilt to overall *tilt += abs (left - right); // Returns sum of nodes under current tree return left + right + root->val; } /* Driver function to print Tilt of whole tree */ int Tilt(Node* root) { int tilt = 0; traverse(root, &tilt); return tilt; } /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ Node* newNode( int data) { Node* temp = new Node; temp->val = data; temp->left = temp->right = NULL; return temp; } // Driver code int main() { /* Let us construct a Binary Tree 4 / 2 9 / 3 5 7 */ Node* root = NULL; root = newNode(4); root->left = newNode(2); root->right = newNode(9); root->left->left = newNode(3); root->left->right = newNode(8); root->right->right = newNode(7); cout << "The Tilt of whole tree is " << Tilt(root); return 0; } |
JAVA
// Java Program to find Tilt of Binary Tree import java.util.*; class GfG { /* A binary tree node has data, pointer to left child and a pointer to right child */ static class Node { int val; Node left, right; } /* Recursive function to calculate Tilt of whole tree */ static class T{ int tilt = 0 ; } static int traverse(Node root, T t ) { if (root == null ) return 0 ; // Compute tilts of left and right subtrees // and find sums of left and right subtrees int left = traverse(root.left, t); int right = traverse(root.right, t); // Add current tilt to overall t.tilt += Math.abs(left - right); // Returns sum of nodes under current tree return left + right + root.val; } /* Driver function to print Tilt of whole tree */ static int Tilt(Node root) { T t = new T(); traverse(root, t); return t.tilt; } /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ static Node newNode( int data) { Node temp = new Node(); temp.val = data; temp.left = null ; temp.right = null ; return temp; } // Driver code public static void main(String[] args) { /* Let us construct a Binary Tree 4 / 2 9 / 3 5 7 */ Node root = null ; root = newNode( 4 ); root.left = newNode( 2 ); root.right = newNode( 9 ); root.left.left = newNode( 3 ); root.left.right = newNode( 8 ); root.right.right = newNode( 7 ); System.out.println( "The Tilt of whole tree is " + Tilt(root)); } } |
Python3
# Python3 Program to find Tilt of # Binary Tree # class that allocates a new node # with the given data and # None left and right pointers. class newNode: def __init__( self , data): self .val = data self .left = self .right = None # Recursive function to calculate # Tilt of whole tree def traverse(root, tilt): if ( not root): return 0 # Compute tilts of left and right subtrees # and find sums of left and right subtrees left = traverse(root.left, tilt) right = traverse(root.right, tilt) # Add current tilt to overall tilt[ 0 ] + = abs (left - right) # Returns sum of nodes under # current tree return left + right + root.val # Driver function to print Tilt # of whole tree def Tilt(root): tilt = [ 0 ] traverse(root, tilt) return tilt[ 0 ] # Driver code if __name__ = = '__main__' : # Let us construct a Binary Tree # 4 # / # 2 9 # / # 3 5 7 root = None root = newNode( 4 ) root.left = newNode( 2 ) root.right = newNode( 9 ) root.left.left = newNode( 3 ) root.left.right = newNode( 8 ) root.right.right = newNode( 7 ) print ( "The Tilt of whole tree is" , Tilt(root)) # This code is contributed by PranchalK |
C#
// C# Program to find Tilt of Binary Tree using System; class GfG { /* A binary tree node has data, pointer to left child and a pointer to right child */ public class Node { public int val; public Node left, right; } /* Recursive function to calculate Tilt of whole tree */ public class T { public int tilt = 0; } static int traverse(Node root, T t ) { if (root == null ) return 0; // Compute tilts of left and right subtrees // and find sums of left and right subtrees int left = traverse(root.left, t); int right = traverse(root.right, t); // Add current tilt to overall t.tilt += Math.Abs(left - right); // Returns sum of nodes under current tree return left + right + root.val; } /* Driver function to print Tilt of whole tree */ static int Tilt(Node root) { T t = new T(); traverse(root, t); return t.tilt; } /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ static Node newNode( int data) { Node temp = new Node(); temp.val = data; temp.left = null ; temp.right = null ; return temp; } // Driver code public static void Main(String[] args) { /* Let us construct a Binary Tree 4 / 2 9 / 3 5 7 */ Node root = null ; root = newNode(4); root.left = newNode(2); root.right = newNode(9); root.left.left = newNode(3); root.left.right = newNode(8); root.right.right = newNode(7); Console.WriteLine( "The Tilt of whole tree is " + Tilt(root)); } } // This code contributed by Rajput-Ji |
Javascript
<script> // JavaScript Program to find Tilt of Binary Tree /* A binary tree node has data, pointer to left child and a pointer to right child */ class Node { constructor(data) { this .left = null ; this .right = null ; this .val = data; } } /* Recursive function to calculate Tilt of whole tree */ let tilt = 0; function traverse(root) { if (root == null ) return 0; // Compute tilts of left and right subtrees // and find sums of left and right subtrees let left = traverse(root.left, tilt); let right = traverse(root.right, tilt); // Add current tilt to overall tilt += Math.abs(left - right); // Returns sum of nodes under current tree return left + right + root.val; } /* Driver function to print Tilt of whole tree */ function Tilt(root) { traverse(root); return tilt; } /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ function newNode(data) { let temp = new Node(data); return temp; } /* Let us construct a Binary Tree 4 / 2 9 / 3 5 7 */ let root = null ; root = newNode(4); root.left = newNode(2); root.right = newNode(9); root.left.left = newNode(3); root.left.right = newNode(8); root.right.right = newNode(7); document.write( "The Tilt of whole tree is " + Tilt(root)); </script> |
输出:
The Tilt of whole tree is 15
复杂性分析:
- 时间复杂性: O(n),其中n是二叉树中的节点数。
- 辅助空间: O(n)和最坏情况一样,二叉树的深度为n。
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END