给定一个数,找出同时是斐波那契数和素数的数(小于或等于n)。
null
例如:
Input : n = 40Output: 2 3 5 13Explanation :Here, range(upper limit) = 40Fibonacci series upto n is, 1, 1, 2, 3, 5, 8, 13, 21, 34.Prime numbers in above series = 2, 3, 5, 13.Input : n = 100Output: 2 3 5 13 89Explanation :Here, range(upper limit) = 40Fibonacci series upto n are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89.Prime numbers in Fibonacci upto n : 2, 3, 5, 13, 89.
A. 简单解决方案 就是迭代生成所有 斐波那契数 小于或等于n。对于每个斐波那契数, 检查它是否为prime 或者不是。如果是素数,则打印它。
一 有效解决方案 就是使用 筛选以生成n以下的所有素数 .生成素数后,我们可以通过使用一个数是斐波那契的性质快速检查一个素数是否是斐波那契的,如果它的形式是5i 2. +4或表格5i 2. – 4. 参考 这 详细信息。
以下是上述步骤的实施情况
C++
// CPP program to print prime numbers present // in Fibonacci series. #include <bits/stdc++.h> using namespace std; // Function to check perfect square bool isSquare( int n) { int sr = sqrt (n); return (sr * sr == n); } // Prints all numbers less than or equal to n that // are both Prime and Fibonacci. void printPrimeAndFib( int n) { // Using Sieve to generate all primes // less than or equal to n. bool prime[n + 1]; memset (prime, true , sizeof (prime)); for ( int p = 2; p * p <= n; p++) { // If prime[p] is not changed, then // it is a prime if (prime[p] == true ) { // Update all multiples of p for ( int i = p * 2; i <= n; i += p) prime[i] = false ; } } // Now traverse through the range and print numbers // that are both prime and Fibonacci. for ( int i=2; i<=n; i++) if (prime[i] && (isSquare(5 * i * i + 4) > 0 || isSquare(5 * i * i - 4) > 0)) cout << i << " " ; } // Driver function int main() { int n = 30; printPrimeAndFib(n); return 0; } |
JAVA
// Java program to print prime numbers // present in Fibonacci series. class PrimeAndFib { // Function to check perfect square Boolean isSquare( int n) { int sr = ( int )Math.sqrt(n); return (sr * sr == n); } // Prints all numbers less than or equal // to n that are both Prime and Fibonacci. static void printPrimeAndFib( int n) { // Using Sieve to generate all // primes less than or equal to n. Boolean[] prime = new Boolean[n + 1 ]; // memset(prime, true, sizeof(prime)); for ( int p = 0 ; p <= n; p++) prime[p] = true ; for ( int p = 2 ; p * p <= n; p++) { // If prime[p] is not changed, // then it is a prime if (prime[p] == true ) { // Update all multiples of p for ( int i = p * 2 ; i <= n; i += p) prime[i] = false ; } } // Now traverse through the range and // print numbers that are both prime // and Fibonacci. for ( int i= 2 ; i<=n; i++) { double sqrt = Math.sqrt( 5 * i * i + 4 ); double sqrt1 = Math.sqrt( 5 * i * i - 4 ); int x = ( int ) sqrt; int y = ( int ) sqrt1; if (prime[i]== true && (Math.pow(sqrt, 2 ) == Math.pow(x, 2 ) || Math.pow(sqrt1, 2 ) == Math.pow(y, 2 ))) System.out.print(i+ " " ); } } // driver program public static void main(String s[]) { int n = 30 ; printPrimeAndFib(n); } } // This code is contributed by Prerna Saini |
Python3
# Python 3 program to print # prime numbers present in # Fibonacci series. import math # Function to check perfect square def isSquare(n) : sr = ( int )(math.sqrt(n)) return (sr * sr = = n) # Prints all numbers less than # or equal to n that are # both Prime and Fibonacci. def printPrimeAndFib(n) : # Using Sieve to generate all # primes less than or equal to n. prime = [ True ] * (n + 1 ) p = 2 while (p * p < = n ): # If prime[p] is not changed, # then it is a prime if (prime[p] = = True ) : # Update all multiples of p for i in range (p * 2 , n + 1 , p) : prime[i] = False p = p + 1 # Now traverse through the range # and print numbers that are # both prime and Fibonacci. for i in range ( 2 , n + 1 ) : if (prime[i] and (isSquare( 5 * i * i + 4 ) > 0 or isSquare( 5 * i * i - 4 ) > 0 )) : print (i , " " ,end = "") # Driver function n = 30 printPrimeAndFib(n); # This code is contributed # by Nikita Tiwari. |
C#
// C# program to print prime numbers // present in Fibonacci series. using System; class GFG { // Function to check perfect square static bool isSquare( int n) { int sr = ( int )Math.Sqrt(n); return (sr * sr == n); } // Prints all numbers less than or equal // to n that are both Prime and Fibonacci. static void printPrimeAndFib( int n) { // Using Sieve to generate all // primes less than or equal to n. bool [] prime = new bool [n + 1]; // memset(prime, true, sizeof(prime)); for ( int p = 0; p <= n; p++) prime[p] = true ; for ( int p = 2; p * p <= n; p++) { // If prime[p] is not changed, // then it is a prime if (prime[p] == true ) { // Update all multiples of p for ( int i = p * 2; i <= n; i += p) prime[i] = false ; } } // Now traverse through the range and // print numbers that are both prime // and Fibonacci. for ( int i = 2; i <= n; i++) { double sqrt = Math.Sqrt(5 * i * i + 4); double sqrt1 = Math.Sqrt(5 * i * i - 4); int x = ( int ) sqrt; int y = ( int ) sqrt1; if (prime[i] == true && (Math.Pow(sqrt, 2) == Math.Pow(x, 2) || Math.Pow(sqrt1, 2) == Math.Pow(y, 2))) Console.Write(i + " " ); } } // driver program public static void Main() { int n = 30; printPrimeAndFib(n); } } // This code is contributed by Anant Agarwal. |
PHP
<?php // PHP program to print prime numbers // present in Fibonacci series. // Function to check perfect square function isSquare( $n ) { $sr = (int)sqrt( $n ); return ( $sr * $sr == $n ); } // Prints all numbers less than or equal // to n that are both Prime and Fibonacci. function printPrimeAndFib( $n ) { // Using Sieve to generate all primes // less than or equal to n. $prime = array_fill (0, $n + 1, true); for ( $p = 2; $p * $p <= $n ; $p ++) { // If prime[p] is not changed, // then it is a prime if ( $prime [ $p ] == true) { // Update all multiples of p for ( $i = $p * 2; $i <= $n ; $i += $p ) $prime [ $i ] = false; } } // Now traverse through the range // and print numbers that are both // prime and Fibonacci. for ( $i = 2; $i <= $n ; $i ++) if ( $prime [ $i ] && (isSquare(5 * $i * $i + 4) > 0 || isSquare(5 * $i * $i - 4) > 0)) echo $i . " " ; } // Driver Code $n = 30; printPrimeAndFib( $n ); // This code is contributed by mits ?> |
Javascript
<script> // Javascript program to print prime numbers // present in Fibonacci series. // Function to check perfect square function isSquare(n) { let sr = Math.sqrt(n); return (sr * sr == n); } // Prints all numbers less than or equal // to n that are both Prime and Fibonacci. function prletPrimeAndFib(n) { // Using Sieve to generate all // primes less than or equal to n. let prime = []; // memset(prime, true, sizeof(prime)); for (let p = 0; p <= n; p++) prime[p] = true ; for (let p = 2; p * p <= n; p++) { // If prime[p] is not changed, // then it is a prime if (prime[p] == true ) { // Update all multiples of p for (let i = p * 2; i <= n; i += p) prime[i] = false ; } } // Now traverse through the range and // print numbers that are both prime // and Fibonacci. for (let i=2; i<=n; i++) { let sqrt = Math.sqrt(5 * i * i + 4); let sqrt1 = Math.sqrt(5 * i * i - 4); let x = Math.floor(sqrt); let y = Math.floor(sqrt1); if (prime[i]== true && (Math.pow(sqrt,2) == Math.pow(x,2) || Math.pow(sqrt1,2) == Math.pow(y,2))) document.write(i+ " " ); } } // Driver code let n = 30; printPrimeAndFib(n); </script> |
输出:
2 3 5 13
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END