考虑三个决策问题P1、P2和P3。众所周知,P1是可判定的,P2是不可判定的。以下哪一项是正确的? (A) 如果P1可还原为P3,则P3是可判定的 (B) 如果P3可还原为P2,则P3是不可判定的 (C) 如果P2可还原为P3,则P3是不可判定的 (D) 如果P3可还原为P2的补码,则P3是可判定的 答复: (C) 说明: 背景: 在计算复杂性理论中,一个决策问题只有两个可能的结果是或否。 如果存在一种有效的方法或算法,可以对决策问题给出正确的是/否答案,则称决策问题是可决策的。 如果没有一个算法总是能给出正确的是/否解,那么决策问题就是不可判定的。
null
在可还原性方面:A≤ P B表示A是一个决策问题,在多项式时间p内可化简为B。这意味着A的实例可以转化为B的实例,在B的解之后,我们可以得到问题A的解。 因此,我们可以得出一些结论:
1. If A ≤p B and B is decidable then A is also decidable. This is because if there exists a specific algorithm for solving B and we can also reduce A to B then we can have a solution of A as well. Hence A is decidable. However the reverse is not true i.e. if A ≤p B and A is decidable then B is also decidable because A can have an algorithm existing for its correct solution but might be the case that B does not. 2. If A ≤p B and A is undecidable then B is also undecidable. This is because if A is undecidable even when it can be reduced to B that simply reflects even B cannot provide an algorithm by which we can solve B and hence A. So decision problem B is also undecidable.
然而,相反的情况在这里也不正确,即如果≤ P B是不可判定的,那么A也是不可判定的,因为可能存在A的算法,可以为A提供解决方案。
根据上述结论,我们可以说选项1、2和4是错误的,选项3是正确的。
Option 1: P1 ≤p P3 and given P1 is decidable gives no conclusion for P3. Option 2: P3 ≤p P2 and given P2 is undecidable gives no conclusion for P3. Option 3: P2 ≤p P3 and given P2 is undecidable gives conclusion for P3 to be undecidable. Option 4: P3 ≤p P2’s complement and given P2 is undecidable therefore P2’s complement is also undecidable gives no conclusion for P3.
这一解释是由 安倍晋香。
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END