在一个国家,所有家庭都想要一个男孩。他们一直生孩子,直到一个男孩出生。该国男孩和女孩的预期比例是多少?
null
解决方案: 假设:生男孩或女孩的概率是相同的。此外,下一个孩子成为男孩的可能性并不取决于历史。
这个问题可以通过在男孩出生前计算女孩的预期数量来解决。
Let NG be the expected no. of girls before a boy is born Let p be the probability that a child is girl and (1-p) be probability that a child is boy. NG can be written as sum of following infinite series. NG = 0*(1-p) + 1*p*(1-p) + 2*p*p*(1-p) + 3*p*p*p*(1-p) + 4*p*p*p*p*(1-p) +..... Putting p = 1/2 and (1-p) = 1/2 in above formula. NG = 0*(1/2) + 1*(1/2)2 + 2*(1/2)3 + 3*(1/2)4 + 4*(1/2)5 + ... 1/2*NG = 0*(1/2)2 + 1*(1/2)3 + 2*(1/2)4 + 3*(1/2)5 + 4*(1/2)6 + ... NG - NG/2 = 1*(1/2)2 + 1*(1/2)3 + 1*(1/2)4 + 1*(1/2)5 + 1*(1/2)6 + ... Using sum formula of infinite geometrical progression with ratio less than 1 NG/2 = (1/4)/(1-1/2) = 1/2 NG = 1
所以预期的女孩数量=1
由于预期的女孩人数是1,而且总有一个男婴,因此预期的男孩和女孩比例是50:50
如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写评论
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END