寻找GCD的Stein算法

斯坦算法 二进制GCD算法 是计算两个非负整数的最大公约数的算法。斯坦的算法用算术移位、比较和减法代替除法。

null

例如:

Input: a = 17, b = 34 Output : 17Input: a = 50, b = 49Output: 1

使用Stein算法GCD(a,b)查找GCD的算法

  1. 如果a和b都为0,则gcd为零gcd(0,0)=0。
  2. gcd(a,0)=a和gcd(0,b)=b,因为一切都除以0。
  3. 如果a和b都是偶数,则gcd(a,b)=2*gcd(a/2,b/2),因为2是公约数。2的乘法可以用位移位运算符完成。
  4. 如果a是偶数,b是奇数,则gcd(a,b)=gcd(a/2,b)。同样,如果a是奇数,b是偶数,那么 gcd(a,b)=gcd(a,b/2)。这是因为2不是公约数。
  5. 如果a和b都是奇数,那么gcd(a,b)=gcd(|a-b |/2,b)。请注意,两个奇数之差是偶数
  6. 重复步骤3-5,直到a=b,或直到a=0。在任何一种情况下,GCD都是幂(2,k)*b,其中幂(2,k)是2,提升到k的幂,k是在步骤2中找到的2的公因数的数量。

迭代实现

C++

// Iterative C++ program to
// implement Stein's Algorithm
#include <bits/stdc++.h>
using namespace std;
// Function to implement
// Stein's Algorithm
int gcd( int a, int b)
{
/* GCD(0, b) == b; GCD(a, 0) == a,
GCD(0, 0) == 0 */
if (a == 0)
return b;
if (b == 0)
return a;
/*Finding K, where K is the
greatest power of 2
that divides both a and b. */
int k;
for (k = 0; ((a | b) & 1) == 0; ++k)
{
a >>= 1;
b >>= 1;
}
/* Dividing a by 2 until a becomes odd */
while ((a & 1) == 0)
a >>= 1;
/* From here on, 'a' is always odd. */
do
{
/* If b is even, remove all factor of 2 in b */
while ((b & 1) == 0)
b >>= 1;
/* Now a and b are both odd.
Swap if necessary so a <= b,
then set b = b - a (which is even).*/
if (a > b)
swap(a, b); // Swap u and v.
b = (b - a);
} while (b != 0);
/* restore common factors of 2 */
return a << k;
}
// Driver code
int main()
{
int a = 34, b = 17;
printf ( "Gcd of given numbers is %d" , gcd(a, b));
return 0;
}


JAVA

// Iterative Java program to
// implement Stein's Algorithm
import java.io.*;
class GFG {
// Function to implement Stein's
// Algorithm
static int gcd( int a, int b)
{
// GCD(0, b) == b; GCD(a, 0) == a,
// GCD(0, 0) == 0
if (a == 0 )
return b;
if (b == 0 )
return a;
// Finding K, where K is the greatest
// power of 2 that divides both a and b
int k;
for (k = 0 ; ((a | b) & 1 ) == 0 ; ++k)
{
a >>= 1 ;
b >>= 1 ;
}
// Dividing a by 2 until a becomes odd
while ((a & 1 ) == 0 )
a >>= 1 ;
// From here on, 'a' is always odd.
do
{
// If b is even, remove
// all factor of 2 in b
while ((b & 1 ) == 0 )
b >>= 1 ;
// Now a and b are both odd. Swap
// if necessary so a <= b, then set
// b = b - a (which is even)
if (a > b)
{
// Swap u and v.
int temp = a;
a = b;
b = temp;
}
b = (b - a);
} while (b != 0 );
// restore common factors of 2
return a << k;
}
// Driver code
public static void main(String args[])
{
int a = 34 , b = 17 ;
System.out.println( "Gcd of given "
+ "numbers is " + gcd(a, b));
}
}
// This code is contributed by Nikita Tiwari


Python3

# Iterative Python 3 program to
# implement Stein's Algorithm
# Function to implement
# Stein's Algorithm
def gcd(a, b):
# GCD(0, b) == b; GCD(a, 0) == a,
# GCD(0, 0) == 0
if (a = = 0 ):
return b
if (b = = 0 ):
return a
# Finding K, where K is the
# greatest power of 2 that
# divides both a and b.
k = 0
while (((a | b) & 1 ) = = 0 ):
a = a >> 1
b = b >> 1
k = k + 1
# Dividing a by 2 until a becomes odd
while ((a & 1 ) = = 0 ):
a = a >> 1
# From here on, 'a' is always odd.
while (b ! = 0 ):
# If b is even, remove all
# factor of 2 in b
while ((b & 1 ) = = 0 ):
b = b >> 1
# Now a and b are both odd. Swap if
# necessary so a <= b, then set
# b = b - a (which is even).
if (a > b):
# Swap u and v.
temp = a
a = b
b = temp
b = (b - a)
# restore common factors of 2
return (a << k)
# Driver code
a = 34
b = 17
print ( "Gcd of given numbers is " , gcd(a, b))
# This code is contributed by Nikita Tiwari.


C#

// Iterative C# program to implement
// Stein's Algorithm
using System;
class GFG {
// Function to implement Stein's
// Algorithm
static int gcd( int a, int b)
{
// GCD(0, b) == b; GCD(a, 0) == a,
// GCD(0, 0) == 0
if (a == 0)
return b;
if (b == 0)
return a;
// Finding K, where K is the greatest
// power of 2 that divides both a and b
int k;
for (k = 0; ((a | b) & 1) == 0; ++k)
{
a >>= 1;
b >>= 1;
}
// Dividing a by 2 until a becomes odd
while ((a & 1) == 0)
a >>= 1;
// From here on, 'a' is always odd
do
{
// If b is even, remove
// all factor of 2 in b
while ((b & 1) == 0)
b >>= 1;
/* Now a and b are both odd. Swap
if necessary so a <= b, then set
b = b - a (which is even).*/
if (a > b) {
// Swap u and v.
int temp = a;
a = b;
b = temp;
}
b = (b - a);
} while (b != 0);
/* restore common factors of 2 */
return a << k;
}
// Driver code
public static void Main()
{
int a = 34, b = 17;
Console.Write( "Gcd of given "
+ "numbers is " + gcd(a, b));
}
}
// This code is contributed by nitin mittal


PHP

<?php
// Iterative php program to
// implement Stein's Algorithm
// Function to implement
// Stein's Algorithm
function gcd( $a , $b )
{
// GCD(0, b) == b; GCD(a, 0) == a,
// GCD(0, 0) == 0
if ( $a == 0)
return $b ;
if ( $b == 0)
return $a ;
// Finding K, where K is the greatest
// power of 2 that divides both a and b.
$k ;
for ( $k = 0; (( $a | $b ) & 1) == 0; ++ $k )
{
$a >>= 1;
$b >>= 1;
}
// Dividing a by 2 until a becomes odd
while (( $a & 1) == 0)
$a >>= 1;
// From here on, 'a' is always odd.
do
{
// If b is even, remove
// all factor of 2 in b
while (( $b & 1) == 0)
$b >>= 1;
// Now a and b are both odd. Swap
// if necessary so a <= b, then set
// b = b - a (which is even)
if ( $a > $b )
swap( $a , $b ); // Swap u and v.
$b = ( $b - $a );
} while ( $b != 0);
// restore common factors of 2
return $a << $k ;
}
// Driver code
$a = 34; $b = 17;
echo "Gcd of given numbers is " .
gcd( $a , $b );
// This code is contributed by ajit
?>


Javascript

<script>
// Iterative JavaScript program to
// implement Stein's Algorithm
// Function to implement
// Stein's Algorithm
function gcd( a,  b)
{
/* GCD(0, b) == b; GCD(a, 0) == a,
GCD(0, 0) == 0 */
if (a == 0)
return b;
if (b == 0)
return a;
/*Finding K, where K is the
greatest power of 2
that divides both a and b. */
let k;
for (k = 0; ((a | b) & 1) == 0; ++k)
{
a >>= 1;
b >>= 1;
}
/* Dividing a by 2 until a becomes odd */
while ((a & 1) == 0)
a >>= 1;
/* From here on, 'a' is always odd. */
do
{
/* If b is even, remove all factor of 2 in b */
while ((b & 1) == 0)
b >>= 1;
/* Now a and b are both odd.
Swap if necessary so a <= b,
then set b = b - a (which is even).*/
if (a > b){
let t = a;
a = b;
b = t;
}
b = (b - a);
} while (b != 0);
/* restore common factors of 2 */
return a << k;
}
// Driver code
let a = 34, b = 17;
document.write( "Gcd of given numbers is " + gcd(a, b));
// This code contributed by gauravrajput1
</script>


输出

Gcd of given numbers is 17

递归实现

C++

// Recursive C++ program to
// implement Stein's Algorithm
#include <bits/stdc++.h>
using namespace std;
// Function to implement
// Stein's Algorithm
int gcd( int a, int b)
{
if (a == b)
return a;
// GCD(0, b) == b; GCD(a, 0) == a,
// GCD(0, 0) == 0
if (a == 0)
return b;
if (b == 0)
return a;
// look for factors of 2
if (~a & 1) // a is even
{
if (b & 1) // b is odd
return gcd(a >> 1, b);
else // both a and b are even
return gcd(a >> 1, b >> 1) << 1;
}
if (~b & 1) // a is odd, b is even
return gcd(a, b >> 1);
// reduce larger number
if (a > b)
return gcd((a - b) >> 1, b);
return gcd((b - a) >> 1, a);
}
// Driver code
int main()
{
int a = 34, b = 17;
printf ( "Gcd of given numbers is %d" , gcd(a, b));
return 0;
}


JAVA

// Recursive Java program to
// implement Stein's Algorithm
import java.io.*;
class GFG {
// Function to implement
// Stein's Algorithm
static int gcd( int a, int b)
{
if (a == b)
return a;
// GCD(0, b) == b; GCD(a, 0) == a,
// GCD(0, 0) == 0
if (a == 0 )
return b;
if (b == 0 )
return a;
// look for factors of 2
if ((~a & 1 ) == 1 ) // a is even
{
if ((b & 1 ) == 1 ) // b is odd
return gcd(a >> 1 , b);
else // both a and b are even
return gcd(a >> 1 , b >> 1 ) << 1 ;
}
// a is odd, b is even
if ((~b & 1 ) == 1 )
return gcd(a, b >> 1 );
// reduce larger number
if (a > b)
return gcd((a - b) >> 1 , b);
return gcd((b - a) >> 1 , a);
}
// Driver code
public static void main(String args[])
{
int a = 34 , b = 17 ;
System.out.println( "Gcd of given"
+ "numbers is " + gcd(a, b));
}
}
// This code is contributed by Nikita Tiwari


Python3

# Recursive Python 3 program to
# implement Stein's Algorithm
# Function to implement
# Stein's Algorithm
def gcd(a, b):
if (a = = b):
return a
# GCD(0, b) == b; GCD(a, 0) == a,
# GCD(0, 0) == 0
if (a = = 0 ):
return b
if (b = = 0 ):
return a
# look for factors of 2
# a is even
if ((~a & 1 ) = = 1 ):
# b is odd
if ((b & 1 ) = = 1 ):
return gcd(a >> 1 , b)
else :
# both a and b are even
return (gcd(a >> 1 , b >> 1 ) << 1 )
# a is odd, b is even
if ((~b & 1 ) = = 1 ):
return gcd(a, b >> 1 )
# reduce larger number
if (a > b):
return gcd((a - b) >> 1 , b)
return gcd((b - a) >> 1 , a)
# Driver code
a, b = 34 , 17
print ( "Gcd of given numbers is " ,
gcd(a, b))
# This code is contributed
# by Nikita Tiwari.


C#

// Recursive C# program to
// implement Stein's Algorithm
using System;
class GFG {
// Function to implement
// Stein's Algorithm
static int gcd( int a, int b)
{
if (a == b)
return a;
// GCD(0, b) == b;
// GCD(a, 0) == a,
// GCD(0, 0) == 0
if (a == 0)
return b;
if (b == 0)
return a;
// look for factors of 2
// a is even
if ((~a & 1) == 1) {
// b is odd
if ((b & 1) == 1)
return gcd(a >> 1, b);
else
// both a and b are even
return gcd(a >> 1, b >> 1) << 1;
}
// a is odd, b is even
if ((~b & 1) == 1)
return gcd(a, b >> 1);
// reduce larger number
if (a > b)
return gcd((a - b) >> 1, b);
return gcd((b - a) >> 1, a);
}
// Driver code
public static void Main()
{
int a = 34, b = 17;
Console.Write( "Gcd of given"
+ "numbers is " + gcd(a, b));
}
}
// This code is contributed by nitin mittal.


PHP

<?php
// Recursive PHP program to
// implement Stein's Algorithm
// Function to implement
// Stein's Algorithm
function gcd( $a , $b )
{
if ( $a == $b )
return $a ;
/* GCD(0, b) == b; GCD(a, 0) == a,
GCD(0, 0) == 0 */
if ( $a == 0)
return $b ;
if ( $b == 0)
return $a ;
// look for factors of 2
if (~ $a & 1) // a is even
{
if ( $b & 1) // b is odd
return gcd( $a >> 1, $b );
else // both a and b are even
return gcd( $a >> 1, $b >> 1) << 1;
}
if (~ $b & 1) // a is odd, b is even
return gcd( $a , $b >> 1);
// reduce larger number
if ( $a > $b )
return gcd(( $a - $b ) >> 1, $b );
return gcd(( $b - $a ) >> 1, $a );
}
// Driver code
$a = 34; $b = 17;
echo "Gcd of given numbers is: " ,
gcd( $a , $b );
// This code is contributed by aj_36
?>


Javascript

<script>
// JavaScript program to
// implement Stein's Algorithm
// Function to implement
// Stein's Algorithm
function gcd(a, b)
{
if (a == b)
return a;
// GCD(0, b) == b; GCD(a, 0) == a,
// GCD(0, 0) == 0
if (a == 0)
return b;
if (b == 0)
return a;
// look for factors of 2
if ((~a & 1) == 1) // a is even
{
if ((b & 1) == 1) // b is odd
return gcd(a >> 1, b);
else // both a and b are even
return gcd(a >> 1, b >> 1) << 1;
}
// a is odd, b is even
if ((~b & 1) == 1)
return gcd(a, b >> 1);
// reduce larger number
if (a > b)
return gcd((a - b) >> 1, b);
return gcd((b - a) >> 1, a);
}
// Driver Code
let a = 34, b = 17;
document.write( "Gcd of given "
+ "numbers is " + gcd(a, b));
</script>


输出

Gcd of given numbers is 17

时间复杂性 :O(N*N),其中N是较大数字中的位数。 你可能还喜欢—— 基本欧几里德算法和扩展欧几里德算法 工具书类 :

本文由 拉胡尔·阿格拉瓦尔 .如果你喜欢GeekSforgek,并想贡献自己的力量,你也可以使用 写极客。组织 或者把你的文章寄去评论-team@geeksforgeeks.org.看到你的文章出现在Geeksforgeks主页上,并帮助其他极客。 如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写下评论。

© 版权声明
THE END
喜欢就支持一下吧
点赞15 分享