给定一个无向连通加权图,用Prim算法求该图的最小生成树(MST)。
null
Input : Adjacency List representation of above graphOutput : Edges in MST 0 - 1 1 - 2 2 - 3 3 - 4 2 - 5 5 - 6 6 - 7 2 - 8Note : There are two possible MSTs, the other MST includes edge 0-7 in place of 1-2.
下面我们讨论了Prim的MST实现。
第二种实现在时间复杂度方面更好一些,但由于我们已经实现了自己的优先级队列,因此非常复杂。STL提供 优先级队列 ,但提供的优先级队列不支持减少密钥操作。在Prim的算法中,我们需要一个 优先级队列 以及以下对优先级队列的操作:
- ExtractMin:从所有尚未包含在MST中的顶点,我们需要获得具有最小键值的顶点。
- DecreaseKey:提取顶点后,我们需要更新其相邻顶点的关键点,如果新关键点较小,则更新数据结构中的关键点。
讨论了算法 在这里 可以修改,这样就不需要减少关键点。其思想是,不要在优先级队列中插入所有顶点,而只插入那些不是MST且已通过MST中包含的顶点访问的顶点。我们在MST[]中的一个单独的布尔数组中跟踪MST中包含的顶点。
1) Initialize keys of all vertices as infinite and parent of every vertex as -1.2) Create an empty priority_queue pq. Every item of pq is a pair (weight, vertex). Weight (or key) is used used as first item of pair as first item is by default used to compare two pairs.3) Initialize all vertices as not part of MST yet. We use boolean array inMST[] for this purpose. This array is required to make sure that an already considered vertex is not included in pq again. This is where Ptim's implementation differs from Dijkstra. In Dijkstra's algorithm, we didn't need this array as distances always increase. We require this array here because key value of a processed vertex may decrease if not checked.4) Insert source vertex into pq and make its key as 0.5) While either pq doesn't become empty a) Extract minimum key vertex from pq. Let the extracted vertex be u. b) Include u in MST using inMST[u] = true. c) Loop through all adjacent of u and do following for every vertex v. // If weight of edge (u,v) is smaller than // key of v and v is not already in MST If inMST[v] = false && key[v] > weight(u, v) (i) Update key of v, i.e., do key[v] = weight(u, v) (ii) Insert v into the pq (iv) parent[v] = u 6) Print MST edges using parent array.
下面是C++实现上述思想。
C++
// STL implementation of Prim's algorithm for MST #include<bits/stdc++.h> using namespace std; # define INF 0x3f3f3f3f // iPair ==> Integer Pair typedef pair< int , int > iPair; // This class represents a directed graph using // adjacency list representation class Graph { int V; // No. of vertices // In a weighted graph, we need to store vertex // and weight pair for every edge list< pair< int , int > > *adj; public : Graph( int V); // Constructor // function to add an edge to graph void addEdge( int u, int v, int w); // Print MST using Prim's algorithm void primMST(); }; // Allocates memory for adjacency list Graph::Graph( int V) { this ->V = V; adj = new list<iPair> [V]; } void Graph::addEdge( int u, int v, int w) { adj[u].push_back(make_pair(v, w)); adj[v].push_back(make_pair(u, w)); } // Prints shortest paths from src to all other vertices void Graph::primMST() { // Create a priority queue to store vertices that // are being preinMST. This is weird syntax in C++. // Refer below link for details of this syntax priority_queue< iPair, vector <iPair> , greater<iPair> > pq; int src = 0; // Taking vertex 0 as source // Create a vector for keys and initialize all // keys as infinite (INF) vector< int > key(V, INF); // To store parent array which in turn store MST vector< int > parent(V, -1); // To keep track of vertices included in MST vector< bool > inMST(V, false ); // Insert source itself in priority queue and initialize // its key as 0. pq.push(make_pair(0, src)); key[src] = 0; /* Looping till priority queue becomes empty */ while (!pq.empty()) { // The first vertex in pair is the minimum key // vertex, extract it from priority queue. // vertex label is stored in second of pair (it // has to be done this way to keep the vertices // sorted key (key must be first item // in pair) int u = pq.top().second; pq.pop(); //Different key values for same vertex may exist in the priority queue. //The one with the least key value is always processed first. //Therefore, ignore the rest. if (inMST[u] == true ){ continue ; } inMST[u] = true ; // Include vertex in MST // 'i' is used to get all adjacent vertices of a vertex list< pair< int , int > >::iterator i; for (i = adj[u].begin(); i != adj[u].end(); ++i) { // Get vertex label and weight of current adjacent // of u. int v = (*i).first; int weight = (*i).second; // If v is not in MST and weight of (u,v) is smaller // than current key of v if (inMST[v] == false && key[v] > weight) { // Updating key of v key[v] = weight; pq.push(make_pair(key[v], v)); parent[v] = u; } } } // Print edges of MST using parent array for ( int i = 1; i < V; ++i) printf ( "%d - %d" , parent[i], i); } // Driver program to test methods of graph class int main() { // create the graph given in above figure int V = 9; Graph g(V); // making above shown graph g.addEdge(0, 1, 4); g.addEdge(0, 7, 8); g.addEdge(1, 2, 8); g.addEdge(1, 7, 11); g.addEdge(2, 3, 7); g.addEdge(2, 8, 2); g.addEdge(2, 5, 4); g.addEdge(3, 4, 9); g.addEdge(3, 5, 14); g.addEdge(4, 5, 10); g.addEdge(5, 6, 2); g.addEdge(6, 7, 1); g.addEdge(6, 8, 6); g.addEdge(7, 8, 7); g.primMST(); return 0; } |
时间复杂度:O(E Log V))
使用 加权图的向量数组表示 :
C++
// STL implementation of Prim's algorithm for MST #include<bits/stdc++.h> using namespace std; # define INF 0x3f3f3f3f // iPair ==> Integer Pair typedef pair< int , int > iPair; // To add an edge void addEdge(vector <pair< int , int > > adj[], int u, int v, int wt) { adj[u].push_back(make_pair(v, wt)); adj[v].push_back(make_pair(u, wt)); } // Prints shortest paths from src to all other vertices void primMST(vector<pair< int , int > > adj[], int V) { // Create a priority queue to store vertices that // are being preinMST. This is weird syntax in C++. // Refer below link for details of this syntax priority_queue< iPair, vector <iPair> , greater<iPair> > pq; int src = 0; // Taking vertex 0 as source // Create a vector for keys and initialize all // keys as infinite (INF) vector< int > key(V, INF); // To store parent array which in turn store MST vector< int > parent(V, -1); // To keep track of vertices included in MST vector< bool > inMST(V, false ); // Insert source itself in priority queue and initialize // its key as 0. pq.push(make_pair(0, src)); key[src] = 0; /* Looping till priority queue becomes empty */ while (!pq.empty()) { // The first vertex in pair is the minimum key // vertex, extract it from priority queue. // vertex label is stored in second of pair (it // has to be done this way to keep the vertices // sorted key (key must be first item // in pair) int u = pq.top().second; pq.pop(); //Different key values for same vertex may exist in the priority queue. //The one with the least key value is always processed first. //Therefore, ignore the rest. if (inMST[u] == true ){ continue ; } inMST[u] = true ; // Include vertex in MST // Traverse all adjacent of u for ( auto x : adj[u]) { // Get vertex label and weight of current adjacent // of u. int v = x.first; int weight = x.second; // If v is not in MST and weight of (u,v) is smaller // than current key of v if (inMST[v] == false && key[v] > weight) { // Updating key of v key[v] = weight; pq.push(make_pair(key[v], v)); parent[v] = u; } } } // Print edges of MST using parent array for ( int i = 1; i < V; ++i) printf ( "%d - %d" , parent[i], i); } // Driver program to test methods of graph class int main() { int V = 9; vector<iPair > adj[V]; // making above shown graph addEdge(adj, 0, 1, 4); addEdge(adj, 0, 7, 8); addEdge(adj, 1, 2, 8); addEdge(adj, 1, 7, 11); addEdge(adj, 2, 3, 7); addEdge(adj, 2, 8, 2); addEdge(adj, 2, 5, 4); addEdge(adj, 3, 4, 9); addEdge(adj, 3, 5, 14); addEdge(adj, 4, 5, 10); addEdge(adj, 5, 6, 2); addEdge(adj, 6, 7, 1); addEdge(adj, 6, 8, 6); addEdge(adj, 7, 8, 7); primMST(adj, V); return 0; } |
注:比如 Dijkstra的优先级队列实现 ,对于同一个顶点,我们可能有多个条目,因为在if条件下,我们不能(也不能)使isMST[v]=true。
C++
// If v is not in MST and weight of (u,v) is smaller // than current key of v if (inMST[v] == false && key[v] > weight) { // Updating key of v key[v] = weight; pq.push(make_pair(key[v], v)); parent[v] = u; } |
JAVA
// If v is not in MST and weight of (u,v) is smaller // than current key of v if (inMST[v] == false && key[v] > weight) { // Updating key of v key[v] = weight; pq.add( new Pair<Integer, Integer>(key[v], v)); parent[v] = u; } // This code is contributed by avanitrachhadiya2155 |
Python3
# If v is not in MST and weight of (u,v) is smaller # than current key of v if (inMST[v] = = False and key[v] > weight) : # Updating key of v key[v] = weight pq.append([key[v], v]) parent[v] = u # This code is contributed by divyeshrabadiya07. |
C#
// If v is not in MST and weight of (u,v) is smaller // than current key of v if (inMST[v] == false && key[v] > weight) { // Updating key of v key[v] = weight; pq.Add( new Tuple< int , int >(key[v], v)); parent[v] = u; } // This code is contributed by divyesh072019. |
Javascript
<script> // If v is not in MST and weight of (u,v) // is smaller than current key of v if (inMST[v] == false && key[v] > weight) { // Updating key of v key[v] = weight; value = [key[v], v]; pq.push(value); parent[v] = u; } // This code is contributed by suresh07 </script> |
但正如Dijkstra算法中所解释的,时间复杂度仍然是O(E logv),因为优先级队列中最多会有O(E)个顶点,并且O(loge)与O(logv)相同。
与Dijkstra的实现不同,这里必须使用布尔数组inMST[],因为新插入项的键值可以小于提取项的键值。因此,我们不能考虑提取的项目。
本文由 Shubham Agrawal 。如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请发表评论
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END