排列球的方式,使相邻的球具有不同的类型

有p型的“p”球,q型的“q”球和r型的“r”球。使用这些球,我们想要创建一条直线,这样就不会有两个相同类型的球相邻。 例如:

null
Input  : p = 1, q = 1, r = 0Output : 2There are only two arrangements PQ and QPInput  : p = 1, q = 1, r = 1Output : 6There are only six arrangements PQR, QPR,QRP, RQP, PRQ and RPQInput  : p = 2, q = 1, r = 1Output : 6There are only six arrangements PQRP, QPRP,PRQP, RPQP, PRPQ and PQPR

我们强烈建议您在继续解决方案之前单击此处并进行练习。

天真的解决方案: 这个问题的简单解决方案是递归解决方案。我们反复呼吁三个案例 1) 最后一个要放置的球是P型的 2) 最后一个要放置的球是Q型的 3) 最后一个要放置的球是R型的 下面是上述想法的实现。

C++

// C++ program to count number of ways to arrange three
// types of balls such that no two balls of same color
// are adjacent to each other
#include<bits/stdc++.h>
using namespace std;
// Returns count of arrangements where last placed ball is
// 'last'.  'last' is 0 for 'p', 1 for 'q' and 2 for 'r'
int countWays( int p, int q, int r, int last)
{
// if number of balls of any color becomes less
// than 0 the number of ways arrangements is 0.
if (p<0 || q<0 || r<0)
return 0;
// If last ball required is of type P and the number
// of balls of P type is 1 while number of balls of
// other color is 0 the number of ways is 1.
if (p==1 && q==0 && r==0 && last==0)
return 1;
// Same case as above for 'q' and 'r'
if (p==0 && q==1 && r==0 && last==1)
return 1;
if (p==0 && q==0 && r==1 && last==2)
return 1;
// if last ball required is P and the number of ways is
// the sum of number of ways to form sequence with 'p-1' P
// balls, q Q Balls and r R balls ending with Q and R.
if (last==0)
return countWays(p-1,q,r,1) + countWays(p-1,q,r,2);
// Same as above case for 'q' and 'r'
if (last==1)
return countWays(p,q-1,r,0) + countWays(p,q-1,r,2);
if (last==2)
return countWays(p,q,r-1,0) + countWays(p,q,r-1,1);
}
// Returns count of required arrangements
int countUtil( int p, int q, int r)
{
// Three cases arise:
return countWays(p, q, r, 0) + // Last required balls is type P
countWays(p, q, r, 1) + // Last required balls is type Q
countWays(p, q, r, 2); // Last required balls is type R
}
// Driver code to test above
int main()
{
int p = 1, q = 1, r = 1;
printf ( "%d" , countUtil(p, q, r));
return 0;
}


JAVA

// Java program to count number
// of ways to arrange three types of
// balls such that no two balls of
// same color are adjacent to each other
class GFG {
// Returns count of arrangements
// where last placed ball is
// 'last'. 'last' is 0 for 'p',
// 1 for 'q' and 2 for 'r'
static int countWays( int p, int q, int r, int last)
{
// if number of balls of any
// color becomes less than 0
// the number of ways arrangements is 0.
if (p < 0 || q < 0 || r < 0 )
return 0 ;
// If last ball required is
// of type P and the number
// of balls of P type is 1
// while number of balls of
// other color is 0 the number
// of ways is 1.
if (p == 1 && q == 0 && r == 0 && last == 0 )
return 1 ;
// Same case as above for 'q' and 'r'
if (p == 0 && q == 1 && r == 0 && last == 1 )
return 1 ;
if (p == 0 && q == 0 && r == 1 && last == 2 )
return 1 ;
// if last ball required is P
// and the number of ways is
// the sum of number of ways
// to form sequence with 'p-1' P
// balls, q Q Balls and r R balls
// ending with Q and R.
if (last == 0 )
return countWays(p - 1 , q, r, 1 ) +
countWays(p - 1 , q, r, 2 );
// Same as above case for 'q' and 'r'
if (last == 1 )
return countWays(p, q - 1 , r, 0 ) +
countWays(p, q - 1 , r, 2 );
if (last == 2 )
return countWays(p, q, r - 1 , 0 ) +
countWays(p, q, r - 1 , 1 );
return 0 ;
}
// Returns count of required arrangements
static int countUtil( int p, int q, int r) {
// Three cases arise:
return countWays(p, q, r, 0 ) + // Last required balls is type P
countWays(p, q, r, 1 ) + // Last required balls is type Q
countWays(p, q, r, 2 ); // Last required balls is type R
}
// Driver code
public static void main(String[] args)
{
int p = 1 , q = 1 , r = 1 ;
System.out.print(countUtil(p, q, r));
}
}
// This code is contributed by Anant Agarwal.


Python3

# Python3 program to count
# number of ways to arrange
# three types of balls such
# that no two balls of same
# color are adjacent to each
# other
# Returns count of arrangements
# where last placed ball is
# 'last'. 'last' is 0 for 'p',
# 1 for 'q' and 2 for 'r'
def countWays(p, q, r, last):
# if number of balls of
# any color becomes less
# than 0 the number of
# ways arrangements is 0.
if (p < 0 or q < 0 or r < 0 ):
return 0 ;
# If last ball required is
# of type P and the number
# of balls of P type is 1
# while number of balls of
# other color is 0 the number
# of ways is 1.
if (p = = 1 and q = = 0 and
r = = 0 and last = = 0 ):
return 1 ;
# Same case as above
# for 'q' and 'r'
if (p = = 0 and q = = 1 and
r = = 0 and last = = 1 ):
return 1 ;
if (p = = 0 and q = = 0 and
r = = 1 and last = = 2 ):
return 1 ;
# if last ball required is P
# and the number of ways is
# the sum of number of ways
# to form sequence with 'p-1' P
# balls, q Q Balls and r R
# balls ending with Q and R.
if (last = = 0 ):
return (countWays(p - 1 , q, r, 1 ) +
countWays(p - 1 , q, r, 2 ));
# Same as above case
# for 'q' and 'r'
if (last = = 1 ):
return (countWays(p, q - 1 , r, 0 ) +
countWays(p, q - 1 , r, 2 ));
if (last = = 2 ):
return (countWays(p, q, r - 1 , 0 ) +
countWays(p, q, r - 1 , 1 ));
# Returns count of
# required arrangements
def countUtil(p, q, r):
# Three cases arise:
# Last required balls is type P
# Last required balls is type Q
# Last required balls is type R
return (countWays(p, q, r, 0 ) +
countWays(p, q, r, 1 ) +
countWays(p, q, r, 2 ));
# Driver Code
p = 1 ;
q = 1 ;
r = 1 ;
print (countUtil(p, q, r));
# This code is contributed by mits


C#

// C# program to count number
// of ways to arrange three types of
// balls such that no two balls of
// same color are adjacent to each other
using System;
class GFG {
// Returns count of arrangements
// where last placed ball is
// 'last'. 'last' is 0 for 'p',
// 1 for 'q' and 2 for 'r'
static int countWays( int p, int q,
int r, int last)
{
// if number of balls of any
// color becomes less than 0
// the number of ways
// arrangements is 0.
if (p < 0 || q < 0 || r < 0)
return 0;
// If last ball required is
// of type P and the number
// of balls of P type is 1
// while number of balls of
// other color is 0 the number
// of ways is 1.
if (p == 1 && q == 0 && r == 0
&& last == 0)
return 1;
// Same case as above for 'q' and 'r'
if (p == 0 && q == 1 && r == 0
&& last == 1)
return 1;
if (p == 0 && q == 0 && r == 1
&& last == 2)
return 1;
// if last ball required is P
// and the number of ways is
// the sum of number of ways
// to form sequence with 'p-1' P
// balls, q Q Balls and r R balls
// ending with Q and R.
if (last == 0)
return countWays(p - 1, q, r, 1) +
countWays(p - 1, q, r, 2);
// Same as above case for 'q' and 'r'
if (last == 1)
return countWays(p, q - 1, r, 0) +
countWays(p, q - 1, r, 2);
if (last == 2)
return countWays(p, q, r - 1, 0) +
countWays(p, q, r - 1, 1);
return 0;
}
// Returns count of required arrangements
static int countUtil( int p, int q, int r)
{
// Three cases arise:
// 1. Last required balls is type P
// 2. Last required balls is type Q
// 3. Last required balls is type R
return countWays(p, q, r, 0) +
countWays(p, q, r, 1) +
countWays(p, q, r, 2);
}
// Driver code
public static void Main()
{
int p = 1, q = 1, r = 1;
Console.Write(countUtil(p, q, r));
}
}
// This code is contributed by nitin mittal.


PHP

<?php
// PHP program to count number
// of ways to arrange three
// types of balls such that
// no two balls of same color
// are adjacent to each other
// Returns count of arrangements
// where last placed ball is
// 'last'. 'last' is 0 for 'p',
// 1 for 'q' and 2 for 'r'
function countWays( $p , $q ,
$r , $last )
{
// if number of balls of
// any color becomes less
// than 0 the number of
// ways arrangements is 0.
if ( $p < 0 || $q
< 0 || $r < 0)
return 0;
// If last ball required is
// of type P and the number
// of balls of P type is 1
// while number of balls of
// other color is 0 the number
// of ways is 1.
if ( $p == 1 && $q == 0 &&
$r == 0 && $last == 0)
return 1;
// Same case as above
// for 'q' and 'r'
if ( $p == 0 && $q == 1 &&
$r == 0 && $last == 1)
return 1;
if ( $p == 0 && $q == 0 &&
$r == 1 && $last == 2)
return 1;
// if last ball required is P
// and the number of ways is
// the sum of number of ways
// to form sequence with 'p-1' P
// balls, q Q Balls and r R
// balls ending with Q and R.
if ( $last == 0)
return countWays( $p - 1, $q , $r , 1) +
countWays( $p - 1, $q , $r , 2);
// Same as above case
// for 'q' and 'r'
if ( $last == 1)
return countWays( $p , $q - 1, $r , 0) +
countWays( $p , $q - 1, $r , 2);
if ( $last == 2)
return countWays( $p , $q , $r - 1, 0) +
countWays( $p , $q , $r - 1, 1);
}
// Returns count of
// required arrangements
function countUtil( $p , $q , $r )
{
// Three cases arise:
// Last required balls is type P
// Last required balls is type Q
// Last required balls is type R
return countWays( $p , $q , $r , 0) +
countWays( $p , $q , $r , 1) +
countWays( $p , $q , $r , 2);
}
// Driver Code
$p = 1;
$q = 1;
$r = 1;
echo (countUtil( $p , $q , $r ));
// This code is contributed by nitin mittal.
?>


Javascript

<script>
// JavaScript program to count number
// of ways to arrange three
// types of balls such that no
// two balls of same color
// are adjacent to each other
// Returns count of arrangements
// where last placed ball is
// 'last'. 'last' is 0 for 'p',
// 1 for 'q' and 2 for 'r'
function countWays(p, q, r, last)
{
// if number of balls of any
// color becomes less than 0
// the number of ways arrangements is 0.
if (p < 0 || q < 0 || r < 0)
return 0;
// If last ball required is
// of type P and the number
// of balls of P type is 1
// while number of balls of
// other color is 0 the number
// of ways is 1.
if (p == 1 && q == 0 && r == 0 && last == 0)
return 1;
// Same case as above for 'q' and 'r'
if (p == 0 && q == 1 && r == 0 && last == 1)
return 1;
if (p == 0 && q == 0 && r == 1 && last == 2)
return 1;
// if last ball required is P
// and the number of ways is
// the sum of number of ways
// to form sequence with 'p-1' P
// balls, q Q Balls and r R balls
// ending with Q and R.
if (last == 0)
return countWays(p - 1, q, r, 1) +
countWays(p - 1, q, r, 2);
// Same as above case for 'q' and 'r'
if (last == 1)
return countWays(p, q - 1, r, 0) +
countWays(p, q - 1, r, 2);
if (last == 2)
return countWays(p, q, r - 1, 0) +
countWays(p, q, r - 1, 1);
return 0;
}
// Returns count of required arrangements
function countUtil(p, q, r)
{
// Three cases arise:
return countWays(p, q, r, 0) + // Last required balls is type P
countWays(p, q, r, 1) + // Last required balls is type Q
countWays(p, q, r, 2); // Last required balls is type R
}
// Driver Code
let p = 1, q = 1, r = 1;
document.write(countUtil(p, q, r));
// This code is contributed by target_2.
</script>


输出:

6

这个解的时间复杂度是指数的。 我们可以观察到,有许多子问题一次又一次地被解决,所以这个问题可以用动态规划(DP)来解决。我们可以很容易地用备忘录来解决这个问题。

C++

// C++ program to count number of ways to arrange three
// types of balls such that no two balls of same color
// are adjacent to each other
#include<bits/stdc++.h>
using namespace std;
#define MAX 100
// table to store to store results of subproblems
int dp[MAX][MAX][MAX][3];
// Returns count of arrangements where last placed ball is
// 'last'.  'last' is 0 for 'p', 1 for 'q' and 2 for 'r'
int countWays( int p, int q, int r, int last)
{
// if number of balls of any color becomes less
// than 0 the number of ways arrangements is 0.
if (p<0 || q<0 || r<0)
return 0;
// If last ball required is of type P and the number
// of balls of P type is 1 while number of balls of
// other color is 0 the number of ways is 1.
if (p==1 && q==0 && r==0 && last==0)
return 1;
// Same case as above for 'q' and 'r'
if (p==0 && q==1 && r==0 && last==1)
return 1;
if (p==0 && q==0 && r==1 && last==2)
return 1;
// If this subproblem is already evaluated
if (dp[p][q][r][last] != -1)
return dp[p][q][r][last];
// if last ball required is P and the number of ways is
// the sum of number of ways to form sequence with 'p-1' P
// balls, q Q Balls and r R balls ending with Q and R.
if (last==0)
dp[p][q][r][last] = countWays(p-1,q,r,1) + countWays(p-1,q,r,2);
// Same as above case for 'q' and 'r'
else if (last==1)
dp[p][q][r][last] = countWays(p,q-1,r,0) + countWays(p,q-1,r,2);
else //(last==2)
dp[p][q][r][last] =  countWays(p,q,r-1,0) + countWays(p,q,r-1,1);
return dp[p][q][r][last];
}
// Returns count of required arrangements
int countUtil( int p, int q, int r)
{
// Initialize 'dp' array
memset (dp, -1, sizeof (dp));
// Three cases arise:
return countWays(p, q, r, 0) + // Last required balls is type P
countWays(p, q, r, 1) + // Last required balls is type Q
countWays(p, q, r, 2); // Last required balls is type R
}
// Driver code to test above
int main()
{
int p = 1, q = 1, r = 1;
printf ( "%d" , countUtil(p, q, r));
return 0;
}


JAVA

// Java program to count number
// of ways to arrange three
// types of balls such that no
// two balls of same color
// are adjacent to each other
import java.util.Arrays;
class GFG
{
static final int MAX = 100 ;
// table to store to store results of subproblems
static int dp[][][][] = new int [MAX][MAX][MAX][ 3 ];
// Returns count of arrangements
// where last placed ball is
// 'last'. 'last' is 0 for 'p',
// 1 for 'q' and 2 for 'r'
static int countWays( int p, int q, int r, int last)
{
// if number of balls of any
// color becomes less than 0
// the number of ways arrangements is 0.
if (p < 0 || q < 0 || r < 0 )
return 0 ;
// If last ball required is
// of type P and the number
// of balls of P type is 1
// while number of balls of
// other color is 0 the number
// of ways is 1.
if (p == 1 && q == 0 && r == 0 && last == 0 )
return 1 ;
// Same case as above for 'q' and 'r'
if (p == 0 && q == 1 && r == 0 && last == 1 )
return 1 ;
if (p == 0 && q == 0 && r == 1 && last == 2 )
return 1 ;
// If this subproblem is already evaluated
if (dp[p][q][r][last] != - 1 )
return dp[p][q][r][last];
// if last ball required is P and
// the number of ways is the sum
// of number of ways to form sequence
// with 'p-1' P balls, q Q balss and
// r R balls ending with Q and R.
if (last == 0 )
dp[p][q][r][last] = countWays(p - 1 , q, r, 1 ) +
countWays(p - 1 , q, r, 2 );
// Same as above case for 'q' and 'r'
else if (last == 1 )
dp[p][q][r][last] = countWays(p, q - 1 , r, 0 ) +
countWays(p, q - 1 , r, 2 );
//(last==2)
else
dp[p][q][r][last] = countWays(p, q, r - 1 , 0 ) +
countWays(p, q, r - 1 , 1 );
return dp[p][q][r][last];
}
// Returns count of required arrangements
static int countUtil( int p, int q, int r)
{
// Initialize 'dp' array
for ( int [][][] row : dp)
{
for ( int [][] innerRow : row)
{
for ( int [] innerInnerRow : innerRow)
{
Arrays.fill(innerInnerRow, - 1 );
}
}
};
// Three cases arise:
return countWays(p, q, r, 0 ) + // Last required balls is type P
countWays(p, q, r, 1 ) + // Last required balls is type Q
countWays(p, q, r, 2 ); // Last required balls is type R
}
// Driver code
public static void main(String[] args)
{
int p = 1 , q = 1 , r = 1 ;
System.out.print(countUtil(p, q, r));
}
}
// This code is contributed by Anant Agarwal.


C#

// C# program to count number
// of ways to arrange three
// types of balls such that no
// two balls of same color
// are adjacent to each other
using System;
class GFG
{
static int MAX = 101;
// table to store to store results of subproblems
static int [,,,] dp = new int [MAX, MAX, MAX, 4];
// Returns count of arrangements
// where last placed ball is
// 'last'. 'last' is 0 for 'p',
// 1 for 'q' and 2 for 'r'
static int countWays( int p, int q, int r, int last)
{
// if number of balls of any
// color becomes less than 0
// the number of ways arrangements is 0.
if (p < 0 || q < 0 || r < 0)
return 0;
// If last ball required is
// of type P and the number
// of balls of P type is 1
// while number of balls of
// other color is 0 the number
// of ways is 1.
if (p == 1 && q == 0 && r == 0 && last == 0)
return 1;
// Same case as above for 'q' and 'r'
if (p == 0 && q == 1 && r == 0 && last == 1)
return 1;
if (p == 0 && q == 0 && r == 1 && last == 2)
return 1;
// If this subproblem is already evaluated
if (dp[p, q, r, last] != -1)
return dp[p, q, r, last];
// if last ball required is P and
// the number of ways is the sum
// of number of ways to form sequence
// with 'p-1' P balls, q Q balss and
// r R balls ending with Q and R.
if (last == 0)
dp[p, q, r, last] = countWays(p - 1, q, r, 1) +
countWays(p - 1, q, r, 2);
// Same as above case for 'q' and 'r'
else if (last == 1)
dp[p, q, r, last] = countWays(p, q - 1, r, 0) +
countWays(p, q - 1, r, 2);
//(last==2)
else
dp[p, q, r, last] = countWays(p, q, r - 1, 0) +
countWays(p, q, r - 1, 1);
return dp[p, q, r, last];
}
// Returns count of required arrangements
static int countUtil( int p, int q, int r)
{
// Initialize 'dp' array
for ( int i = 0; i < MAX; i++)
for ( int j = 0; j < MAX; j++)
for ( int k = 0; k < MAX; k++)
for ( int l = 0; l < 4; l++)
dp[i, j, k, l] = -1;
// Three cases arise:
return countWays(p, q, r, 0) + // Last required balls is type P
countWays(p, q, r, 1) + // Last required balls is type Q
countWays(p, q, r, 2); // Last required balls is type R
}
// Driver code
static void Main()
{
int p = 1, q = 1, r = 1;
Console.WriteLine(countUtil(p, q, r));
}
}
// This code is contributed by mits.


Python3

# Python3 program to count number of ways to
# arrange three types of balls such that no
# two balls of same color are adjacent to each other
MAX = 100 ;
# table to store to store results of subproblems
dp = [[[[ - 1 ] * 4 for i in range ( MAX )]
for j in range ( MAX )]
for k in range ( MAX )];
# Returns count of arrangements where last
# placed ball is 'last'. 'last' is 0 for 'p',
# 1 for 'q' and 2 for 'r'
def countWays(p, q, r, last):
# if number of balls of any color becomes less
# than 0 the number of ways arrangements is 0.
if (p < 0 or q < 0 or r < 0 ):
return 0 ;
# If last ball required is of type P and the
# number of balls of P type is 1 while number
# of balls of other color is 0 the number of
# ways is 1.
if (p = = 1 and q = = 0 and
r = = 0 and last = = 0 ):
return 1 ;
# Same case as above for 'q' and 'r'
if (p = = 0 and q = = 1 and
r = = 0 and last = = 1 ):
return 1 ;
if (p = = 0 and q = = 0 and
r = = 1 and last = = 2 ):
return 1 ;
# If this subproblem is already evaluated
if (dp[p][q][r][last] ! = - 1 ):
return dp[p][q][r][last];
# if last ball required is P and the number
# of ways is the sum of number of ways to
# form sequence with 'p-1' P balls, q Q Balls
# and r R balls ending with Q and R.
if (last = = 0 ):
dp[p][q][r][last] = (countWays(p - 1 , q, r, 1 ) +
countWays(p - 1 , q, r, 2 ));
# Same as above case for 'q' and 'r'
elif (last = = 1 ):
dp[p][q][r][last] = (countWays(p, q - 1 , r, 0 ) +
countWays(p, q - 1 , r, 2 ));
else :
#(last==2)
dp[p][q][r][last] = (countWays(p, q, r - 1 , 0 ) +
countWays(p, q, r - 1 , 1 ));
return dp[p][q][r][last];
# Returns count of required arrangements
def countUtil(p, q, r):
# Three cases arise:
# Last required balls is type P
# Last required balls is type Q
# Last required balls is type R
return (countWays(p, q, r, 0 ) +
countWays(p, q, r, 1 ) +
countWays(p, q, r, 2 ));
# Driver Code
p, q, r = 1 , 1 , 1 ;
print (countUtil(p, q, r));
# This code is contributed by mits


PHP

<?php
// PHP program to count number of ways to
// arrange three types of balls such that
// no two balls of same color are adjacent
// to each other
$MAX = 100;
// table to store to store results of subproblems
$dp = array_fill (0, $MAX , array_fill (0, $MAX ,
array_fill (0, $MAX , array_fill (0, 3, -1))));
// Returns count of arrangements where last
// placed ball is 'last'. 'last' is 0 for 'p',
// 1 for 'q' and 2 for 'r'
function countWays( $p , $q , $r , $last )
{
global $dp ;
// if number of balls of any color becomes less
// than 0 the number of ways arrangements is 0.
if ( $p < 0 || $q < 0 || $r < 0)
return 0;
// If last ball required is of type P and the
// number of balls of P type is 1 while number
// of balls of other color is 0 the number of
// ways is 1.
if ( $p == 1 && $q == 0 && $r == 0 && $last == 0)
return 1;
// Same case as above for 'q' and 'r'
if ( $p == 0 && $q == 1 && $r == 0 && $last == 1)
return 1;
if ( $p == 0 && $q == 0 && $r == 1 && $last == 2)
return 1;
// If this subproblem is already evaluated
if ( $dp [ $p ][ $q ][ $r ][ $last ] != -1)
return $dp [ $p ][ $q ][ $r ][ $last ];
// if last ball required is P and the number of
// ways is the sum of number of ways to form
// sequence with 'p-1' P balls, q Q Balls and r
// R balls ending with Q and R.
if ( $last == 0)
$dp [ $p ][ $q ][ $r ][ $last ] = countWays( $p - 1, $q , $r , 1) +
countWays( $p - 1, $q , $r , 2);
// Same as above case for 'q' and 'r'
else if ( $last == 1)
$dp [ $p ][ $q ][ $r ][ $last ] = countWays( $p , $q - 1, $r , 0) +
countWays( $p , $q - 1, $r , 2);
else //(last==2)
$dp [ $p ][ $q ][ $r ][ $last ] = countWays( $p , $q , $r - 1, 0) +
countWays( $p , $q , $r - 1, 1);
return $dp [ $p ][ $q ][ $r ][ $last ];
}
// Returns count of required arrangements
function countUtil( $p , $q , $r )
{
// Three cases arise:
return countWays( $p , $q , $r , 0) + // Last required balls is type P
countWays( $p , $q , $r , 1) + // Last required balls is type Q
countWays( $p , $q , $r , 2); // Last required balls is type R
}
// Driver code
$p = 1;
$q = 1;
$r = 1;
print (countUtil( $p , $q , $r ));
// This code is contributed by mits
?>


Javascript

<script>
// javascript program to count number
// of ways to arrange three
// types of balls such that no
// two balls of same color
// are adjacent to each other
var MAX = 100;
// table to store to store results of subproblems
var dp = Array(MAX).fill(-1).map(x =>
Array(MAX).fill(-1).map(x =>
Array(MAX).fill(-1).map(x => Array(3).fill(-1))));
// Returns count of arrangements
// where last placed ball is
// 'last'. 'last' is 0 for 'p',
// 1 for 'q' and 2 for 'r'
function countWays( p , q , r , last)
{
// if number of balls of any
// color becomes less than 0
// the number of ways arrangements is 0.
if (p < 0 || q < 0 || r < 0)
return 0;
// If last ball required is
// of type P and the number
// of balls of P type is 1
// while number of balls of
// other color is 0 the number
// of ways is 1.
if (p == 1 && q == 0 && r == 0 && last == 0)
return 1;
// Same case as above for 'q' and 'r'
if (p == 0 && q == 1 && r == 0 && last == 1)
return 1;
if (p == 0 && q == 0 && r == 1 && last == 2)
return 1;
// If this subproblem is already evaluated
if (dp[p][q][r][last] != -1)
return dp[p][q][r][last];
// if last ball required is P and
// the number of ways is the sum
// of number of ways to form sequence
// with 'p-1' P balls, q Q balss and
// r R balls ending with Q and R.
if (last == 0)
dp[p][q][r][last] = countWays(p - 1, q, r, 1) +
countWays(p - 1, q, r, 2);
// Same as above case for 'q' and 'r'
else if (last == 1)
dp[p][q][r][last] = countWays(p, q - 1, r, 0) +
countWays(p, q - 1, r, 2);
//(last==2)
else
dp[p][q][r][last] = countWays(p, q, r - 1, 0) +
countWays(p, q, r - 1, 1);
return dp[p][q][r][last];
}
// Returns count of required arrangements
function countUtil(p , q , r)
{
// Three cases arise:
return countWays(p, q, r, 0) + // Last required balls is type P
countWays(p, q, r, 1) + // Last required balls is type Q
countWays(p, q, r, 2); // Last required balls is type R
}
// Driver code
var p = 1, q = 1, r = 1;
document.write(countUtil(p, q, r));
// This code contributed by Princi Singh
</script>


输出:

6

时间复杂性: O(p*q*r) 辅助空间: O(p*q*r*3) 本文由 巴武克·查拉 .如果你喜欢GeekSforgek,并想贡献自己的力量,你也可以写一篇文章,然后将文章邮寄给评论-team@geeksforgeeks.org.看到你的文章出现在Geeksforgeks主页上,并帮助其他极客。 如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写下评论。

© 版权声明
THE END
喜欢就支持一下吧
点赞9 分享