检查一棵二叉树是否是另一棵二叉树的子树|集2

给定两棵二叉树,检查第一棵树是否是第二棵树的子树。树T的子树是一棵树S,由T中的一个节点和T中的所有子节点组成。 根节点对应的子树是整个树;与任何其他节点对应的子树称为适当子树。 例如,在下面的例子中,Tree1是Tree2的子树。

null
        Tree1          x         /          a       b               c        Tree2              z            /             x      e        /               a       b      k               c

我们讨论过 a O(n) 2. )这个问题的解决方案 .本文讨论了O(n)解。这个想法基于这样一个事实: inorder和preorder/postorder唯一标识二叉树 .树S是T的子树,如果S的顺序和前序遍历分别是T的顺序和前序遍历的子串。 以下是详细的步骤。 1. )查找T的按序和按序遍历,将它们存储在两个辅助数组inT[]和preT[]中。 2. )查找S的按序和按序遍历,将它们存储在两个辅助数组inS[]和preS[]中。 3. )如果inS[]是inT[]的子数组,preS[]是preT[]的子数组,那么S是T的子树,否则不是。 在上述算法中,我们还可以使用后序遍历代替前序遍历。 让我们考虑一下上面的例子。

Inorder and Preorder traversals of the big tree are.inT[]   =  {a, c, x, b, z, e, k}preT[]  =  {z, x, a, c, b, e, k}Inorder and Preorder traversals of small tree areinS[]  = {a, c, x, b}preS[] = {x, a, c, b}We can easily figure out that inS[] is a subarray ofinT[] and preS[] is a subarray of preT[]. 

编辑

The above algorithm doesn't work for cases where a tree is presentin another tree, but not as a subtree. Consider the following example.        Tree1          x         /          a       b     /            c                 Tree2          x         /          a       b     /             c            dInorder and Preorder traversals of the big tree or Tree2 are.inT[]   =  {c, a, x, b, d}preT[]  =  {x, a, c, b, d}Inorder and Preorder traversals of small tree or Tree1 are-inS[]  = {c, a, x, b}preS[] = {x, a, c, b}The Tree2 is not a subtree of Tree1, but inS[] and preS[] aresubarrays of inT[] and preT[] respectively.

当我们在顺序和前序遍历中遇到NULL时,可以通过添加一个特殊字符来扩展上述算法以处理此类情况。感谢希瓦姆·戈尔建议延长期限。 下面是上述算法的实现。

C++

#include <cstring>
#include <iostream>
using namespace std;
#define MAX 100
// Structure of a tree node
struct Node {
char key;
struct Node *left, *right;
};
// A utility function to create a new BST node
Node* newNode( char item)
{
Node* temp = new Node;
temp->key = item;
temp->left = temp->right = NULL;
return temp;
}
// A utility function to store inorder traversal of tree rooted
// with root in an array arr[]. Note that i is passed as reference
void storeInorder(Node* root, char arr[], int & i)
{
if (root == NULL) {
arr[i++] = '$' ;
return ;
}
storeInorder(root->left, arr, i);
arr[i++] = root->key;
storeInorder(root->right, arr, i);
}
// A utility function to store preorder traversal of tree rooted
// with root in an array arr[]. Note that i is passed as reference
void storePreOrder(Node* root, char arr[], int & i)
{
if (root == NULL) {
arr[i++] = '$' ;
return ;
}
arr[i++] = root->key;
storePreOrder(root->left, arr, i);
storePreOrder(root->right, arr, i);
}
/* This function returns true if S is a subtree of T, otherwise false */
bool isSubtree(Node* T, Node* S)
{
/* base cases */
if (S == NULL)
return true ;
if (T == NULL)
return false ;
// Store Inorder traversals of T and S in inT[0..m-1]
// and inS[0..n-1] respectively
int m = 0, n = 0;
char inT[MAX], inS[MAX];
storeInorder(T, inT, m);
storeInorder(S, inS, n);
inT[m] = ' ' , inS[n] = ' ' ;
// If inS[] is not a substring of inT[], return false
if ( strstr (inT, inS) == NULL)
return false ;
// Store Preorder traversals of T and S in preT[0..m-1]
// and preS[0..n-1] respectively
m = 0, n = 0;
char preT[MAX], preS[MAX];
storePreOrder(T, preT, m);
storePreOrder(S, preS, n);
preT[m] = ' ' , preS[n] = ' ' ;
// If preS[] is not a substring of preT[], return false
// Else return true
return ( strstr (preT, preS) != NULL);
}
// Driver program to test above function
int main()
{
Node* T = newNode( 'a' );
T->left = newNode( 'b' );
T->right = newNode( 'd' );
T->left->left = newNode( 'c' );
T->right->right = newNode( 'e' );
Node* S = newNode( 'a' );
S->left = newNode( 'b' );
S->left->left = newNode( 'c' );
S->right = newNode( 'd' );
if (isSubtree(T, S))
cout << "Yes: S is a subtree of T" ;
else
cout << "No: S is NOT a subtree of T" ;
return 0;
}


JAVA

// Java program to check if binary tree
// is subtree of another binary tree
class Node {
char data;
Node left, right;
Node( char item)
{
data = item;
left = right = null ;
}
}
class Passing {
int i;
int m = 0 ;
int n = 0 ;
}
class BinaryTree {
static Node root;
Passing p = new Passing();
String strstr(String haystack, String needle)
{
if (haystack == null || needle == null ) {
return null ;
}
int hLength = haystack.length();
int nLength = needle.length();
if (hLength < nLength) {
return null ;
}
if (nLength == 0 ) {
return haystack;
}
for ( int i = 0 ; i <= hLength - nLength; i++) {
if (haystack.charAt(i) == needle.charAt( 0 )) {
int j = 0 ;
for (; j < nLength; j++) {
if (haystack.charAt(i + j) != needle.charAt(j)) {
break ;
}
}
if (j == nLength) {
return haystack.substring(i);
}
}
}
return null ;
}
// A utility function to store inorder traversal of tree rooted
// with root in an array arr[]. Note that i is passed as reference
void storeInorder(Node node, char arr[], Passing i)
{
if (node == null ) {
arr[i.i++] = '$' ;
return ;
}
storeInorder(node.left, arr, i);
arr[i.i++] = node.data;
storeInorder(node.right, arr, i);
}
// A utility function to store preorder traversal of tree rooted
// with root in an array arr[]. Note that i is passed as reference
void storePreOrder(Node node, char arr[], Passing i)
{
if (node == null ) {
arr[i.i++] = '$' ;
return ;
}
arr[i.i++] = node.data;
storePreOrder(node.left, arr, i);
storePreOrder(node.right, arr, i);
}
/* This function returns true if S is a subtree of T, otherwise false */
boolean isSubtree(Node T, Node S)
{
/* base cases */
if (S == null ) {
return true ;
}
if (T == null ) {
return false ;
}
// Store Inorder traversals of T and S in inT[0..m-1]
// and inS[0..n-1] respectively
char inT[] = new char [ 100 ];
String op1 = String.valueOf(inT);
char inS[] = new char [ 100 ];
String op2 = String.valueOf(inS);
storeInorder(T, inT, p);
storeInorder(S, inS, p);
inT[p.m] = ' ' ;
inS[p.m] = ' ' ;
// If inS[] is not a substring of preS[], return false
if (strstr(op1, op2) != null ) {
return false ;
}
// Store Preorder traversals of T and S in inT[0..m-1]
// and inS[0..n-1] respectively
p.m = 0 ;
p.n = 0 ;
char preT[] = new char [ 100 ];
char preS[] = new char [ 100 ];
String op3 = String.valueOf(preT);
String op4 = String.valueOf(preS);
storePreOrder(T, preT, p);
storePreOrder(S, preS, p);
preT[p.m] = ' ' ;
preS[p.n] = ' ' ;
// If inS[] is not a substring of preS[], return false
// Else return true
return (strstr(op3, op4) != null );
}
// Driver program to test above functions
public static void main(String args[])
{
BinaryTree tree = new BinaryTree();
Node T = new Node( 'a' );
T.left = new Node( 'b' );
T.right = new Node( 'd' );
T.left.left = new Node( 'c' );
T.right.right = new Node( 'e' );
Node S = new Node( 'a' );
S.left = new Node( 'b' );
S.right = new Node( 'd' );
S.left.left = new Node( 'c' );
if (tree.isSubtree(T, S)) {
System.out.println( "Yes, S is a subtree of T" );
}
else {
System.out.println( "No, S is not a subtree of T" );
}
}
}
// This code is contributed by Mayank Jaiswal


Python3

MAX = 100
# class for a tree node
class Node:
def __init__( self ):
self .key = ' '
self .left = None
self .right = None
# A utility function to create a new BST node
def newNode(item):
temp = Node()
temp.key = item
return temp
# A utility function to store inorder traversal of tree rooted
# with root in an array arr[]. Note that i is passed as reference
def storeInorder(root, i):
if (root = = None ):
return '$'
res = storeInorder(root.left, i)
res + = root.key
res + = storeInorder(root.right, i)
return res
# A utility function to store preorder traversal of tree rooted
# with root in an array arr[]. Note that i is passed as reference
def storePreOrder(root, i):
if (root = = None ):
return '$'
res = root.key
res + = storePreOrder(root.left, i)
res + = storePreOrder(root.right, i)
return res
# This function returns true if S is a subtree of T, otherwise false
def isSubtree(T, S):
# base cases
if (S = = None ):
return True
if (T = = None ):
return False
# Store Inorder traversals of T and S in inT[0..m-1]
# and inS[0..n-1] respectively
m = 0
n = 0
inT = storeInorder(T, m)
inS = storeInorder(S, n)
# If inS[] is not a substring of inT[], return false
res = True
if inS in inT :
res = True
else :
res = False
if (res = = False ):
return res
# Store Preorder traversals of T and S in preT[0..m-1]
# and preS[0..n-1] respectively
m = 0
n = 0
preT = storePreOrder(T, m)
preS = storePreOrder(S, n)
# If preS[] is not a substring of preT[], return false
# Else return true
if preS in preT:
return True
else :
return False
# Driver program to test above function
T = newNode( 'a' )
T.left = newNode( 'b' )
T.right = newNode( 'd' )
T.left.left = newNode( 'c' )
T.right.right = newNode( 'e' )
S = newNode( 'a' )
S.left = newNode( 'b' )
S.left.left = newNode( 'c' )
S.right = newNode( 'd' )
if (isSubtree(T, S)):
print ( "Yes: S is a subtree of T" )
else :
print ( "No: S is NOT a subtree of T" )
# This code is contributed by rj13to.


C#

// C# program to check if binary tree is
// subtree of another binary tree
using System;
public class Node {
public char data;
public Node left, right;
public Node( char item)
{
data = item;
left = right = null ;
}
}
public class Passing {
public int i;
public int m = 0;
public int n = 0;
}
public class BinaryTree {
static Node root;
Passing p = new Passing();
String strstr(String haystack, String needle)
{
if (haystack == null || needle == null ) {
return null ;
}
int hLength = haystack.Length;
int nLength = needle.Length;
if (hLength < nLength) {
return null ;
}
if (nLength == 0) {
return haystack;
}
for ( int i = 0; i <= hLength - nLength; i++) {
if (haystack[i] == needle[0]) {
int j = 0;
for (; j < nLength; j++) {
if (haystack[i + j] != needle[j]) {
break ;
}
}
if (j == nLength) {
return haystack.Substring(i);
}
}
}
return null ;
}
// A utility function to store inorder
// traversal of tree rooted with root in
// an array arr[]. Note that i is passed as reference
void storeInorder(Node node, char [] arr, Passing i)
{
if (node == null ) {
arr[i.i++] = '$' ;
return ;
}
storeInorder(node.left, arr, i);
arr[i.i++] = node.data;
storeInorder(node.right, arr, i);
}
// A utility function to store preorder
// traversal of tree rooted with root in
// an array arr[]. Note that i is passed as reference
void storePreOrder(Node node, char [] arr, Passing i)
{
if (node == null ) {
arr[i.i++] = '$' ;
return ;
}
arr[i.i++] = node.data;
storePreOrder(node.left, arr, i);
storePreOrder(node.right, arr, i);
}
/* This function returns true if S
is a subtree of T, otherwise false */
bool isSubtree(Node T, Node S)
{
/* base cases */
if (S == null ) {
return true ;
}
if (T == null ) {
return false ;
}
// Store Inorder traversals of T and S in inT[0..m-1]
// and inS[0..n-1] respectively
char [] inT = new char [100];
String op1 = String.Join( "" , inT);
char [] inS = new char [100];
String op2 = String.Join( "" , inS);
storeInorder(T, inT, p);
storeInorder(S, inS, p);
inT[p.m] = ' ' ;
inS[p.m] = ' ' ;
// If inS[] is not a substring of preS[], return false
if (strstr(op1, op2) != null ) {
return false ;
}
// Store Preorder traversals of T and S in inT[0..m-1]
// and inS[0..n-1] respectively
p.m = 0;
p.n = 0;
char [] preT = new char [100];
char [] preS = new char [100];
String op3 = String.Join( "" , preT);
String op4 = String.Join( "" , preS);
storePreOrder(T, preT, p);
storePreOrder(S, preS, p);
preT[p.m] = ' ' ;
preS[p.n] = ' ' ;
// If inS[] is not a substring of preS[], return false
// Else return true
return (strstr(op3, op4) != null );
}
// Driver program to test above functions
public static void Main(String[] args)
{
BinaryTree tree = new BinaryTree();
Node T = new Node( 'a' );
T.left = new Node( 'b' );
T.right = new Node( 'd' );
T.left.left = new Node( 'c' );
T.right.right = new Node( 'e' );
Node S = new Node( 'a' );
S.left = new Node( 'b' );
S.right = new Node( 'd' );
S.left.left = new Node( 'c' );
if (tree.isSubtree(T, S)) {
Console.WriteLine( "Yes, S is a subtree of T" );
}
else {
Console.WriteLine( "No, S is not a subtree of T" );
}
}
}
// This code contributed by Rajput-Ji


输出:

No: S is NOT a subtree of T

时间复杂性: 二叉树的按序和按序遍历需要O(n)个时间。功能 strstr() 也可以在O(n)时间内使用 KMP字符串匹配算法 . 辅助空间: O(n) 幸亏 阿什维尼·辛格 感谢你提出这种方法。如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写评论

© 版权声明
THE END
喜欢就支持一下吧
点赞8 分享