给定一个单词序列,以及一行中可以输入的字符数限制(线宽)。在给定的顺序中放置换行符,以便打印整齐。假设每个单词的长度小于线宽。 像MS word这样的文字处理程序负责放置换行符。这个想法是要有平衡的线条。换句话说,不是只有几行有很多额外空间,有些行有少量额外空间。
The extra spaces includes spaces put at the end of every line except the last one. The problem is to minimize the following total cost. Cost of a line = (Number of extra spaces in the line)^3 Total Cost = Sum of costs for all linesFor example, consider the following string and line width M = 15 "Geeks for Geeks presents word wrap problem" Following is the optimized arrangement of words in 3 linesGeeks for Geekspresents wordwrap problem The total extra spaces in line 1, line 2 and line 3 are 0, 2 and 3 respectively. So optimal value of total cost is 0 + 2*2*2 + 3*3*3 = 35
请注意,总成本函数不是额外空间之和,而是额外空间的立方体(或正方形)之和。成本函数背后的理念是平衡线条之间的空间。例如,考虑下面两组相同单词的排列: 1) 有三行。一行有3个额外的空格,所有其他行有0个额外的空格。总额外空间=3+0+0=3。总成本=3*3*3+0*0*0+0*0*0=27。 2) 有三行。这三行中的每一行都有一个额外的空间。总额外空间=1+1+1=3。总成本=1*1*1+1*1*1+1*1*1=3。 在这两种情况下,总的额外空间都是3,但第二种安排应该是首选的,因为额外空间在所有三条线路中都是平衡的。三次和的成本函数可以达到这个目的,因为第二种情况下总成本的值较小。
方法1(贪婪解) 贪婪的解决方案是在第一行中放置尽可能多的单词。然后对第二行执行同样的操作,依此类推,直到所有单词都放好。这种解决方案在许多情况下都能给出最优解,但并非在所有情况下都能给出最优解。例如,考虑以下字符串“AAA BB CC DDDDD”和线宽为6。贪婪方法将产生以下输出。
aaa bb cc ddddd
以上三行中的额外空格分别为0、4和1。所以总成本是0+64+1=65。 但上述解决方案并不是最好的解决方案。下面的布局有更平衡的空间。因此总成本函数的价值较小。
aaabb ccddddd
以上三行中的额外空格分别为3、1和1。所以总成本是27+1+1=29。 尽管在某些情况下是次优的,但贪婪方法被许多字处理器使用,如MS word和OpenOffice。组织撰稿人。
方法2(带记忆的递归方法)
这个问题可以用分而治之(递归)的方法来解决。其算法如下所述:
1. We recur for each word starting with first word, and remaining length of the line (initially k).2. The last word would be the base case: We check if we can put it on same line: if yes, then we return cost as 0. if no, we return cost of current line based on its remaining length.3. For non-last words, we have to check if it can fit in the current line: if yes, then we have two choices i.e. whether to put it in same line or next line. if we put it on next line: cost1 = square(remLength) + cost of putting word on next line. if we put it on same line: cost2 = cost of putting word on same line. return min(cost1, cost2) if no, then we have to put it on next line: return cost of putting word on next line4. We use memoization table of size n (number of words) * k (line length), to keep track of already visited positions.
JAVA
/*package whatever //do not write package name here */ import java.io.*; import java.util.Arrays; public class WordWrapDpMemo { private int solveWordWrap( int [] nums, int k) { int [][] memo = new int [nums.length][k + 1 ]; for ( int i = 0 ; i < nums.length; i++) { Arrays.fill(memo[i], - 1 ); } return solveWordWrapUsingMemo(nums, nums.length, k, 0 , k, memo); } private int solveWordWrap( int [] words, int n, int length, int wordIndex, int remLength, int [][] memo) { //base case for last word if (wordIndex == n - 1 ) { memo[wordIndex][remLength] = words[wordIndex] < remLength ? 0 : square(remLength); return memo[wordIndex][remLength]; } int currWord = words[wordIndex]; //if word can fit in the remaining line if (currWord < remLength) { return Math.min( //if word is kept on same line solveWordWrapUsingMemo(words, n, length, wordIndex + 1 , remLength == length ? remLength - currWord : remLength - currWord - 1 , memo), //if word is kept on next line square(remLength) + solveWordWrapUsingMemo(words, n, length, wordIndex + 1 , length - currWord, memo) ); } else { //if word is kept on next line return square(remLength) + solveWordWrapUsingMemo(words, n, length, wordIndex + 1 , length - currWord, memo); } } private int solveWordWrapUsingMemo( int [] words, int n, int length, int wordIndex, int remLength, int [][] memo) { if (memo[wordIndex][remLength] != - 1 ) { return memo[wordIndex][remLength]; } memo[wordIndex][remLength] = solveWordWrap(words, n, length, wordIndex, remLength, memo); return memo[wordIndex][remLength]; } private int square( int n) { return n * n; } public static void main(String[] args) { System.out.println( new WordWrapDpMemo().solveWordWrap( new int []{ 3 , 2 , 2 , 5 }, 6 )); } } |
C#
/*package whatever //do not write package name here */ using System; using System.Collections.Generic; public class WordWrapDpMemo { private int solveWordWrap( int [] nums, int k) { int [,] memo = new int [nums.Length ,k + 1]; for ( int i = 0; i < memo.GetLength(0); i++) { for ( int j = 0; j < memo.GetLength(1); j++) memo[i, j] = -1; } return solveWordWrapUsingMemo(nums, nums.Length, k, 0, k, memo); } private int solveWordWrap( int [] words, int n, int length, int wordIndex, int remLength, int [,] memo) { // base case for last word if (wordIndex == n - 1) { memo[wordIndex, remLength] = words[wordIndex] < remLength ? 0 : square(remLength); return memo[wordIndex, remLength]; } int currWord = words[wordIndex]; // if word can fit in the remaining line if (currWord < remLength) { return Math.Min( // if word is kept on same line solveWordWrapUsingMemo(words, n, length, wordIndex + 1, remLength == length ? remLength - currWord : remLength - currWord - 1, memo), // if word is kept on next line square(remLength) + solveWordWrapUsingMemo(words, n, length, wordIndex + 1, length - currWord, memo)); } else { // if word is kept on next line return square(remLength) + solveWordWrapUsingMemo(words, n, length, wordIndex + 1, length - currWord, memo); } } private int solveWordWrapUsingMemo( int [] words, int n, int length, int wordIndex, int remLength, int [,] memo) { if (memo[wordIndex,remLength] != -1) { return memo[wordIndex,remLength]; } memo[wordIndex,remLength] = solveWordWrap(words, n, length, wordIndex, remLength, memo); return memo[wordIndex, remLength]; } private int square( int n) { return n * n; } public static void Main(String[] args) { Console.WriteLine( new WordWrapDpMemo(). solveWordWrap( new int [] { 3, 2, 2, 5 }, 6)); } } // This code is contributed by gauravrajput1 |
10
方法3(动态规划) 下面的动态方法严格遵循Cormen书中给出的算法。首先,我们计算2D表格lc[]中所有可能行的成本。值lc[i][j]表示将i到j的单词放在一行中的成本,其中i和j是输入序列中单词的索引。如果从i到j的一系列单词不能放在一行中,那么lc[i][j]被认为是无限的(以避免它成为解决方案的一部分)。一旦我们构造了lc[]表,我们就可以使用下面的递归公式计算总成本。在下面的公式中,C[j]是从1到j排列单词的最佳总成本。
上面的递归已经实现 重叠子问题性质 例如,子问题c(2)的解被c(3)、c(4)等使用。所以动态规划被用来存储子问题的结果。数组c[]可以从左到右计算,因为每个值只取决于之前的值。 为了打印输出,我们跟踪哪些字在哪些行上,我们可以保持一个平行的p数组,指向每个c值的来源。最后一行从单词p[n]开始,经过单词n。前一行从单词p[p[n]]开始,经过单词p[n]-1,等等。函数printSolution()使用p[]打印解决方案。 在下面的程序中,输入是一个数组l[],表示序列中的单词长度。值l[i]表示输入序列中第i个字的长度(i从1开始)。
C++
// A Dynamic programming solution for Word Wrap Problem #include <bits/stdc++.h> using namespace std; #define INF INT_MAX // A utility function to print the solution int printSolution ( int p[], int n); // l[] represents lengths of different words in input sequence. // For example, l[] = {3, 2, 2, 5} is for a sentence like // "aaa bb cc ddddd". n is size of l[] and M is line width // (maximum no. of characters that can fit in a line) void solveWordWrap ( int l[], int n, int M) { // For simplicity, 1 extra space is used in all below arrays // extras[i][j] will have number of extra spaces if words from i // to j are put in a single line int extras[n+1][n+1]; // lc[i][j] will have cost of a line which has words from // i to j int lc[n+1][n+1]; // c[i] will have total cost of optimal arrangement of words // from 1 to i int c[n+1]; // p[] is used to print the solution. int p[n+1]; int i, j; // calculate extra spaces in a single line. The value extra[i][j] // indicates extra spaces if words from word number i to j are // placed in a single line for (i = 1; i <= n; i++) { extras[i][i] = M - l[i-1]; for (j = i+1; j <= n; j++) extras[i][j] = extras[i][j-1] - l[j-1] - 1; } // Calculate line cost corresponding to the above calculated extra // spaces. The value lc[i][j] indicates cost of putting words from // word number i to j in a single line for (i = 1; i <= n; i++) { for (j = i; j <= n; j++) { if (extras[i][j] < 0) lc[i][j] = INF; else if (j == n && extras[i][j] >= 0) lc[i][j] = 0; else lc[i][j] = extras[i][j]*extras[i][j]; } } // Calculate minimum cost and find minimum cost arrangement. // The value c[j] indicates optimized cost to arrange words // from word number 1 to j. c[0] = 0; for (j = 1; j <= n; j++) { c[j] = INF; for (i = 1; i <= j; i++) { if (c[i-1] != INF && lc[i][j] != INF && (c[i-1] + lc[i][j] < c[j])) { c[j] = c[i-1] + lc[i][j]; p[j] = i; } } } printSolution(p, n); } int printSolution ( int p[], int n) { int k; if (p[n] == 1) k = 1; else k = printSolution (p, p[n]-1) + 1; cout<< "Line number " <<k<< ": From word no. " <<p[n]<< " to " <<n<<endl; return k; } // Driver program to test above functions int main() { int l[] = {3, 2, 2, 5}; int n = sizeof (l)/ sizeof (l[0]); int M = 6; solveWordWrap (l, n, M); return 0; } //This is code is contributed by rathbhupendra |
C
// A Dynamic programming solution for Word Wrap Problem #include <limits.h> #include <stdio.h> #define INF INT_MAX // A utility function to print the solution int printSolution ( int p[], int n); // l[] represents lengths of different words in input sequence. // For example, l[] = {3, 2, 2, 5} is for a sentence like // "aaa bb cc ddddd". n is size of l[] and M is line width // (maximum no. of characters that can fit in a line) void solveWordWrap ( int l[], int n, int M) { // For simplicity, 1 extra space is used in all below arrays // extras[i][j] will have number of extra spaces if words from i // to j are put in a single line int extras[n+1][n+1]; // lc[i][j] will have cost of a line which has words from // i to j int lc[n+1][n+1]; // c[i] will have total cost of optimal arrangement of words // from 1 to i int c[n+1]; // p[] is used to print the solution. int p[n+1]; int i, j; // calculate extra spaces in a single line. The value extra[i][j] // indicates extra spaces if words from word number i to j are // placed in a single line for (i = 1; i <= n; i++) { extras[i][i] = M - l[i-1]; for (j = i+1; j <= n; j++) extras[i][j] = extras[i][j-1] - l[j-1] - 1; } // Calculate line cost corresponding to the above calculated extra // spaces. The value lc[i][j] indicates cost of putting words from // word number i to j in a single line for (i = 1; i <= n; i++) { for (j = i; j <= n; j++) { if (extras[i][j] < 0) lc[i][j] = INF; else if (j == n && extras[i][j] >= 0) lc[i][j] = 0; else lc[i][j] = extras[i][j]*extras[i][j]; } } // Calculate minimum cost and find minimum cost arrangement. // The value c[j] indicates optimized cost to arrange words // from word number 1 to j. c[0] = 0; for (j = 1; j <= n; j++) { c[j] = INF; for (i = 1; i <= j; i++) { if (c[i-1] != INF && lc[i][j] != INF && (c[i-1] + lc[i][j] < c[j])) { c[j] = c[i-1] + lc[i][j]; p[j] = i; } } } printSolution(p, n); } int printSolution ( int p[], int n) { int k; if (p[n] == 1) k = 1; else k = printSolution (p, p[n]-1) + 1; printf ( "Line number %d: From word no. %d to %d " , k, p[n], n); return k; } // Driver program to test above functions int main() { int l[] = {3, 2, 2, 5}; int n = sizeof (l)/ sizeof (l[0]); int M = 6; solveWordWrap (l, n, M); return 0; } |
JAVA
// A Dynamic programming solution for // Word Wrap Problem in Java public class WordWrap { final int MAX = Integer.MAX_VALUE; // A utility function to print the solution int printSolution ( int p[], int n) { int k; if (p[n] == 1 ) k = 1 ; else k = printSolution (p, p[n]- 1 ) + 1 ; System.out.println( "Line number" + " " + k + ": " + "From word no." + " " + p[n] + " " + "to" + " " + n); return k; } // l[] represents lengths of different words in input sequence. // For example, l[] = {3, 2, 2, 5} is for a sentence like // "aaa bb cc ddddd". n is size of l[] and M is line width // (maximum no. of characters that can fit in a line) void solveWordWrap ( int l[], int n, int M) { // For simplicity, 1 extra space is used in all below arrays // extras[i][j] will have number of extra spaces if words from i // to j are put in a single line int extras[][] = new int [n+ 1 ][n+ 1 ]; // lc[i][j] will have cost of a line which has words from // i to j int lc[][]= new int [n+ 1 ][n+ 1 ]; // c[i] will have total cost of optimal arrangement of words // from 1 to i int c[] = new int [n+ 1 ]; // p[] is used to print the solution. int p[] = new int [n+ 1 ]; // calculate extra spaces in a single line. The value extra[i][j] // indicates extra spaces if words from word number i to j are // placed in a single line for ( int i = 1 ; i <= n; i++) { extras[i][i] = M - l[i- 1 ]; for ( int j = i+ 1 ; j <= n; j++) extras[i][j] = extras[i][j- 1 ] - l[j- 1 ] - 1 ; } // Calculate line cost corresponding to the above calculated extra // spaces. The value lc[i][j] indicates cost of putting words from // word number i to j in a single line for ( int i = 1 ; i <= n; i++) { for ( int j = i; j <= n; j++) { if (extras[i][j] < 0 ) lc[i][j] = MAX; else if (j == n && extras[i][j] >= 0 ) lc[i][j] = 0 ; else lc[i][j] = extras[i][j]*extras[i][j]; } } // Calculate minimum cost and find minimum cost arrangement. // The value c[j] indicates optimized cost to arrange words // from word number 1 to j. c[ 0 ] = 0 ; for ( int j = 1 ; j <= n; j++) { c[j] = MAX; for ( int i = 1 ; i <= j; i++) { if (c[i- 1 ] != MAX && lc[i][j] != MAX && (c[i- 1 ] + lc[i][j] < c[j])) { c[j] = c[i- 1 ] + lc[i][j]; p[j] = i; } } } printSolution(p, n); } public static void main(String args[]) { WordWrap w = new WordWrap(); int l[] = { 3 , 2 , 2 , 5 }; int n = l.length; int M = 6 ; w.solveWordWrap (l, n, M); } } // This code is contributed by Saket Kumar |
Python3
# A Dynamic programming solution # for Word Wrap Problem # A utility function to print # the solution # l[] represents lengths of different # words in input sequence. For example, # l[] = {3, 2, 2, 5} is for a sentence # like "aaa bb cc ddddd". n is size of # l[] and M is line width (maximum no. # of characters that can fit in a line) INF = 2147483647 def printSolution(p, n): k = 0 if p[n] = = 1 : k = 1 else : k = printSolution(p, p[n] - 1 ) + 1 print ( 'Line number ' , k, ': From word no. ' , p[n], 'to ' , n) return k def solveWordWrap (l, n, M): # For simplicity, 1 extra space is # used in all below arrays # extras[i][j] will have number # of extra spaces if words from i # to j are put in a single line extras = [[ 0 for i in range (n + 1 )] for i in range (n + 1 )] # lc[i][j] will have cost of a line # which has words from i to j lc = [[ 0 for i in range (n + 1 )] for i in range (n + 1 )] # c[i] will have total cost of # optimal arrangement of words # from 1 to i c = [ 0 for i in range (n + 1 )] # p[] is used to print the solution. p = [ 0 for i in range (n + 1 )] # calculate extra spaces in a single # line. The value extra[i][j] indicates # extra spaces if words from word number # i to j are placed in a single line for i in range (n + 1 ): extras[i][i] = M - l[i - 1 ] for j in range (i + 1 , n + 1 ): extras[i][j] = (extras[i][j - 1 ] - l[j - 1 ] - 1 ) # Calculate line cost corresponding # to the above calculated extra # spaces. The value lc[i][j] indicates # cost of putting words from word number # i to j in a single line for i in range (n + 1 ): for j in range (i, n + 1 ): if extras[i][j] < 0 : lc[i][j] = INF; elif j = = n and extras[i][j] > = 0 : lc[i][j] = 0 else : lc[i][j] = (extras[i][j] * extras[i][j]) # Calculate minimum cost and find # minimum cost arrangement. The value # c[j] indicates optimized cost to # arrange words from word number 1 to j. c[ 0 ] = 0 for j in range ( 1 , n + 1 ): c[j] = INF for i in range ( 1 , j + 1 ): if (c[i - 1 ] ! = INF and lc[i][j] ! = INF and ((c[i - 1 ] + lc[i][j]) < c[j])): c[j] = c[i - 1 ] + lc[i][j] p[j] = i printSolution(p, n) # Driver Code l = [ 3 , 2 , 2 , 5 ] n = len (l) M = 6 solveWordWrap(l, n, M) # This code is contributed by sahil shelangia |
C#
// A Dynamic programming solution for Word Wrap // Problem in Java using System; public class GFG { static int MAX = int .MaxValue; // A utility function to print the solution static int printSolution ( int []p, int n) { int k; if (p[n] == 1) k = 1; else k = printSolution (p, p[n]-1) + 1; Console.WriteLine( "Line number" + " " + k + ": From word no." + " " + p[n] + " " + "to" + " " + n); return k; } // l[] represents lengths of different // words in input sequence. For example, // l[] = {3, 2, 2, 5} is for a sentence // like "aaa bb cc ddddd". n is size of // l[] and M is line width (maximum no. // of characters that can fit in a line) static void solveWordWrap ( int []l, int n, int M) { // For simplicity, 1 extra space // is used in all below arrays // extras[i][j] will have number of // extra spaces if words from i // to j are put in a single line int [,]extras = new int [n+1,n+1]; // lc[i][j] will have cost of a line // which has words from i to j int [,]lc = new int [n+1,n+1]; // c[i] will have total cost of // optimal arrangement of words // from 1 to i int []c = new int [n+1]; // p[] is used to print the solution. int []p = new int [n+1]; // calculate extra spaces in a single // line. The value extra[i][j] indicates // extra spaces if words from word number // i to j are placed in a single line for ( int i = 1; i <= n; i++) { extras[i,i] = M - l[i-1]; for ( int j = i+1; j <= n; j++) extras[i,j] = extras[i,j-1] - l[j-1] - 1; } // Calculate line cost corresponding to // the above calculated extra spaces. The // value lc[i][j] indicates cost of // putting words from word number i to // j in a single line for ( int i = 1; i <= n; i++) { for ( int j = i; j <= n; j++) { if (extras[i,j] < 0) lc[i,j] = MAX; else if (j == n && extras[i,j] >= 0) lc[i,j] = 0; else lc[i,j] = extras[i,j] * extras[i,j]; } } // Calculate minimum cost and find // minimum cost arrangement. The value // c[j] indicates optimized cost to // arrange words from word number // 1 to j. c[0] = 0; for ( int j = 1; j <= n; j++) { c[j] = MAX; for ( int i = 1; i <= j; i++) { if (c[i-1] != MAX && lc[i,j] != MAX && (c[i-1] + lc[i,j] < c[j])) { c[j] = c[i-1] + lc[i,j]; p[j] = i; } } } printSolution(p, n); } // Driver code public static void Main() { int []l = {3, 2, 2, 5}; int n = l.Length; int M = 6; solveWordWrap (l, n, M); } } // This code is contributed by nitin mittal. |
Javascript
<script> // A Dynamic programming solution for // Word Wrap Problem in Javascript let MAX = Number.MAX_VALUE; // A utility function to print the solution function printSolution (p, n) { let k; if (p[n] == 1) k = 1; else k = printSolution (p, p[n]-1) + 1; document.write( "Line number" + " " + k + ": " + "From word no." + " " + p[n] + " " + "to" + " " + n + "</br>" ); return k; } // l[] represents lengths of different words in input sequence. // For example, l[] = {3, 2, 2, 5} is for a sentence like // "aaa bb cc ddddd". n is size of l[] and M is line width // (maximum no. of characters that can fit in a line) function solveWordWrap (l, n, M) { // For simplicity, 1 extra space is used in all below arrays // extras[i][j] will have number of extra spaces if words from i // to j are put in a single line let extras = new Array(n+1); // lc[i][j] will have cost of a line which has words from // i to j let lc = new Array(n+1); for (let i = 0; i < n + 1; i++) { extras[i] = new Array(n + 1); lc[i] = new Array(n + 1); for (let j = 0; j < n + 1; j++) { extras[i][j] = 0; lc[i][j] = 0; } } // c[i] will have total cost of optimal arrangement of words // from 1 to i let c = new Array(n+1); // p[] is used to print the solution. let p = new Array(n+1); // calculate extra spaces in a single line. The value extra[i][j] // indicates extra spaces if words from word number i to j are // placed in a single line for (let i = 1; i <= n; i++) { extras[i][i] = M - l[i-1]; for (let j = i+1; j <= n; j++) extras[i][j] = extras[i][j-1] - l[j-1] - 1; } // Calculate line cost corresponding to the above calculated extra // spaces. The value lc[i][j] indicates cost of putting words from // word number i to j in a single line for (let i = 1; i <= n; i++) { for (let j = i; j <= n; j++) { if (extras[i][j] < 0) lc[i][j] = MAX; else if (j == n && extras[i][j] >= 0) lc[i][j] = 0; else lc[i][j] = extras[i][j]*extras[i][j]; } } // Calculate minimum cost and find minimum cost arrangement. // The value c[j] indicates optimized cost to arrange words // from word number 1 to j. c[0] = 0; for (let j = 1; j <= n; j++) { c[j] = MAX; for (let i = 1; i <= j; i++) { if (c[i-1] != MAX && lc[i][j] != MAX && (c[i-1] + lc[i][j] < c[j])) { c[j] = c[i-1] + lc[i][j]; p[j] = i; } } } printSolution(p, n); } let l = [3, 2, 2, 5]; let n = l.length; let M = 6; solveWordWrap (l, n, M); // This code is contributed by mukesh07. </script> |
Line number 1: From word no. 1 to 1Line number 2: From word no. 2 to 3Line number 3: From word no. 4 to 4
时间复杂度:O(n^2) 辅助空间:O(n^2)上述程序中使用的辅助空间可以优化为O(n)(详情见参考文献2) 换行字问题(空间优化解决方案) 参考资料: http://en.wikipedia.org/wiki/Word_wrap 如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写下评论。