最长双音子序列| DP-15

给定一个数组arr[0…n-1]包含n个正整数 子序列 如果arr[]的值先增大,然后减小,则称为双音。编写一个函数,将数组作为参数,并返回最长双音子序列的长度。 按递增顺序排序的序列被视为双音序列,递减部分为空。同样,降序序列被视为双音序列,递增部分为空。 例如:

null
Input arr[] = {1, 11, 2, 10, 4, 5, 2, 1};Output: 6 (A Longest Bitonic Subsequence of length 6 is 1, 2, 10, 4, 2, 1)Input arr[] = {12, 11, 40, 5, 3, 1}Output: 5 (A Longest Bitonic Subsequence of length 5 is 12, 11, 5, 3, 1)Input arr[] = {80, 60, 30, 40, 20, 10}Output: 5 (A Longest Bitonic Subsequence of length 5 is 80, 60, 30, 20, 10)

来源:微软采访问题

解决方案 这个问题是标准的变化 最长增长子序列(LIS)问题 .让输入数组为长度为n的arr[]我们需要使用的动态规划解构造两个数组lis[]和lds[] LIS问题 .lis[i]存储以arr[i]结尾的最长递增子序列的长度。lds[i]存储从arr[i]开始的最长递减子序列的长度。最后,我们需要返回lis[i]+lds[i]-1的最大值,其中i从0到n-1。 下面是上述动态规划解决方案的实现。

C++

/* Dynamic Programming implementation of longest bitonic subsequence problem */
#include<stdio.h>
#include<stdlib.h>
/* lbs() returns the length of the Longest Bitonic Subsequence in
arr[] of size n. The function mainly creates two temporary arrays
lis[] and lds[] and returns the maximum lis[i] + lds[i] - 1.
lis[i] ==> Longest Increasing subsequence ending with arr[i]
lds[i] ==> Longest decreasing subsequence starting with arr[i]
*/
int lbs( int arr[], int n )
{
int i, j;
/* Allocate memory for LIS[] and initialize LIS values as 1 for
all indexes */
int *lis = new int [n];
for (i = 0; i < n; i++)
lis[i] = 1;
/* Compute LIS values from left to right */
for (i = 1; i < n; i++)
for (j = 0; j < i; j++)
if (arr[i] > arr[j] && lis[i] < lis[j] + 1)
lis[i] = lis[j] + 1;
/* Allocate memory for lds and initialize LDS values for
all indexes */
int *lds = new int [n];
for (i = 0; i < n; i++)
lds[i] = 1;
/* Compute LDS values from right to left */
for (i = n-2; i >= 0; i--)
for (j = n-1; j > i; j--)
if (arr[i] > arr[j] && lds[i] < lds[j] + 1)
lds[i] = lds[j] + 1;
/* Return the maximum value of lis[i] + lds[i] - 1*/
int max = lis[0] + lds[0] - 1;
for (i = 1; i < n; i++)
if (lis[i] + lds[i] - 1 > max)
max = lis[i] + lds[i] - 1;
return max;
}
/* Driver program to test above function */
int main()
{
int arr[] = {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5,
13, 3, 11, 7, 15};
int n = sizeof (arr)/ sizeof (arr[0]);
printf ( "Length of LBS is %d" , lbs( arr, n ) );
return 0;
}


JAVA

/* Dynamic Programming implementation in Java for longest bitonic
subsequence problem */
import java.util.*;
import java.lang.*;
import java.io.*;
class LBS
{
/* lbs() returns the length of the Longest Bitonic Subsequence in
arr[] of size n. The function mainly creates two temporary arrays
lis[] and lds[] and returns the maximum lis[i] + lds[i] - 1.
lis[i] ==> Longest Increasing subsequence ending with arr[i]
lds[i] ==> Longest decreasing subsequence starting with arr[i]
*/
static int lbs( int arr[], int n )
{
int i, j;
/* Allocate memory for LIS[] and initialize LIS values as 1 for
all indexes */
int [] lis = new int [n];
for (i = 0 ; i < n; i++)
lis[i] = 1 ;
/* Compute LIS values from left to right */
for (i = 1 ; i < n; i++)
for (j = 0 ; j < i; j++)
if (arr[i] > arr[j] && lis[i] < lis[j] + 1 )
lis[i] = lis[j] + 1 ;
/* Allocate memory for lds and initialize LDS values for
all indexes */
int [] lds = new int [n];
for (i = 0 ; i < n; i++)
lds[i] = 1 ;
/* Compute LDS values from right to left */
for (i = n- 2 ; i >= 0 ; i--)
for (j = n- 1 ; j > i; j--)
if (arr[i] > arr[j] && lds[i] < lds[j] + 1 )
lds[i] = lds[j] + 1 ;
/* Return the maximum value of lis[i] + lds[i] - 1*/
int max = lis[ 0 ] + lds[ 0 ] - 1 ;
for (i = 1 ; i < n; i++)
if (lis[i] + lds[i] - 1 > max)
max = lis[i] + lds[i] - 1 ;
return max;
}
public static void main (String[] args)
{
int arr[] = { 0 , 8 , 4 , 12 , 2 , 10 , 6 , 14 , 1 , 9 , 5 ,
13 , 3 , 11 , 7 , 15 };
int n = arr.length;
System.out.println( "Length of LBS is " + lbs( arr, n ));
}
}


Python3

# Dynamic Programming implementation of longest bitonic subsequence problem
"""
lbs() returns the length of the Longest Bitonic Subsequence in
arr[] of size n. The function mainly creates two temporary arrays
lis[] and lds[] and returns the maximum lis[i] + lds[i] - 1.
lis[i] ==> Longest Increasing subsequence ending with arr[i]
lds[i] ==> Longest decreasing subsequence starting with arr[i]
"""
def lbs(arr):
n = len (arr)
# allocate memory for LIS[] and initialize LIS values as 1
# for all indexes
lis = [ 1 for i in range (n + 1 )]
# Compute LIS values from left to right
for i in range ( 1 , n):
for j in range ( 0 , i):
if ((arr[i] > arr[j]) and (lis[i] < lis[j] + 1 )):
lis[i] = lis[j] + 1
# allocate memory for LDS and initialize LDS values for
# all indexes
lds = [ 1 for i in range (n + 1 )]
# Compute LDS values from right to left
for i in reversed ( range (n - 1 )): #loop from n-2 downto 0
for j in reversed ( range (i - 1 ,n)): #loop from n-1 downto i-1
if (arr[i] > arr[j] and lds[i] < lds[j] + 1 ):
lds[i] = lds[j] + 1
# Return the maximum value of (lis[i] + lds[i] - 1)
maximum = lis[ 0 ] + lds[ 0 ] - 1
for i in range ( 1 , n):
maximum = max ((lis[i] + lds[i] - 1 ), maximum)
return maximum
# Driver program to test the above function
arr = [ 0 , 8 , 4 , 12 , 2 , 10 , 6 , 14 , 1 , 9 , 5 , 13 ,
3 , 11 , 7 , 15 ]
print ( "Length of LBS is" ,lbs(arr))
# This code is contributed by Nikhil Kumar Singh(nickzuck_007)


C#

/* Dynamic Programming implementation in
C# for longest bitonic subsequence problem */
using System;
class LBS {
/* lbs() returns the length of the Longest Bitonic Subsequence in
arr[] of size n. The function mainly creates two temporary arrays
lis[] and lds[] and returns the maximum lis[i] + lds[i] - 1.
lis[i] ==> Longest Increasing subsequence ending with arr[i]
lds[i] ==> Longest decreasing subsequence starting with arr[i]
*/
static int lbs( int [] arr, int n)
{
int i, j;
/* Allocate memory for LIS[] and initialize
LIS values as 1 for all indexes */
int [] lis = new int [n];
for (i = 0; i < n; i++)
lis[i] = 1;
/* Compute LIS values from left to right */
for (i = 1; i < n; i++)
for (j = 0; j < i; j++)
if (arr[i] > arr[j] && lis[i] < lis[j] + 1)
lis[i] = lis[j] + 1;
/* Allocate memory for lds and initialize LDS values for
all indexes */
int [] lds = new int [n];
for (i = 0; i < n; i++)
lds[i] = 1;
/* Compute LDS values from right to left */
for (i = n - 2; i >= 0; i--)
for (j = n - 1; j > i; j--)
if (arr[i] > arr[j] && lds[i] < lds[j] + 1)
lds[i] = lds[j] + 1;
/* Return the maximum value of lis[i] + lds[i] - 1*/
int max = lis[0] + lds[0] - 1;
for (i = 1; i < n; i++)
if (lis[i] + lds[i] - 1 > max)
max = lis[i] + lds[i] - 1;
return max;
}
// Driver code
public static void Main()
{
int [] arr = { 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5,
13, 3, 11, 7, 15 };
int n = arr.Length;
Console.WriteLine( "Length of LBS is " + lbs(arr, n));
}
}
// This code is contributed by vt_m.


PHP

<?php
// Dynamic Programming implementation
// of longest bitonic subsequence problem
/* lbs() returns the length of the Longest
Bitonic Subsequence in arr[] of size n.
The function mainly creates two temporary
arrays lis[] and lds[] and returns the
maximum lis[i] + lds[i] - 1.
lis[i] ==> Longest Increasing subsequence
ending with arr[i]
lds[i] ==> Longest decreasing subsequence
starting with arr[i]
*/
function lbs(& $arr , $n )
{
/* Allocate memory for LIS[] and initialize
LIS values as 1 for all indexes */
$lis = array_fill (0, $n , NULL);
for ( $i = 0; $i < $n ; $i ++)
$lis [ $i ] = 1;
/* Compute LIS values from left to right */
for ( $i = 1; $i < $n ; $i ++)
for ( $j = 0; $j < $i ; $j ++)
if ( $arr [ $i ] > $arr [ $j ] &&
$lis [ $i ] < $lis [ $j ] + 1)
$lis [ $i ] = $lis [ $j ] + 1;
/* Allocate memory for lds and initialize
LDS values for all indexes */
$lds = array_fill (0, $n , NULL);
for ( $i = 0; $i < $n ; $i ++)
$lds [ $i ] = 1;
/* Compute LDS values from right to left */
for ( $i = $n - 2; $i >= 0; $i --)
for ( $j = $n - 1; $j > $i ; $j --)
if ( $arr [ $i ] > $arr [ $j ] &&
$lds [ $i ] < $lds [ $j ] + 1)
$lds [ $i ] = $lds [ $j ] + 1;
/* Return the maximum value of
lis[i] + lds[i] - 1*/
$max = $lis [0] + $lds [0] - 1;
for ( $i = 1; $i < $n ; $i ++)
if ( $lis [ $i ] + $lds [ $i ] - 1 > $max )
$max = $lis [ $i ] + $lds [ $i ] - 1;
return $max ;
}
// Driver Code
$arr = array (0, 8, 4, 12, 2, 10, 6, 14,
1, 9, 5, 13, 3, 11, 7, 15);
$n = sizeof( $arr );
echo "Length of LBS is " . lbs( $arr , $n );
// This code is contributed by ita_c
?>


Javascript

<script>
/* Dynamic Programming implementation in JavaScript for longest bitonic
subsequence problem */
/* lbs() returns the length of the Longest Bitonic Subsequence in
arr[] of size n. The function mainly creates two temporary arrays
lis[] and lds[] and returns the maximum lis[i] + lds[i] - 1.
lis[i] ==> Longest Increasing subsequence ending with arr[i]
lds[i] ==> Longest decreasing subsequence starting with arr[i]
*/
function lbs(arr,n)
{
let i, j;
/* Allocate memory for LIS[] and initialize LIS values as 1 for
all indexes */
let lis = new Array(n)
for (i = 0; i < n; i++)
lis[i] = 1;
/* Compute LIS values from left to right */
for (i = 1; i < n; i++)
for (j = 0; j < i; j++)
if (arr[i] > arr[j] && lis[i] < lis[j] + 1)
lis[i] = lis[j] + 1;
/* Allocate memory for lds and initialize LDS values for
all indexes */
let lds = new Array(n);
for (i = 0; i < n; i++)
lds[i] = 1;
/* Compute LDS values from right to left */
for (i = n-2; i >= 0; i--)
for (j = n-1; j > i; j--)
if (arr[i] > arr[j] && lds[i] < lds[j] + 1)
lds[i] = lds[j] + 1;
/* Return the maximum value of lis[i] + lds[i] - 1*/
let max = lis[0] + lds[0] - 1;
for (i = 1; i < n; i++)
if (lis[i] + lds[i] - 1 > max)
max = lis[i] + lds[i] - 1;
return max;
}
let arr=[0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
let n = arr.length;
document.write( "Length of LBS is " + lbs( arr, n ));
// This code is contributed by avanitrachhadiya2155
</script>


输出:

 Length of LBS is 7

时间复杂度:O(n^2) 辅助空间:O(n)

如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写评论

© 版权声明
THE END
喜欢就支持一下吧
点赞7 分享