打印二叉树的两个给定级别之间的节点

给定一个二叉树和两个级别的数字“low”和“high”,从低级到高级打印节点。

null
For example consider the binary tree given in below diagram. Input: Root of below tree, low = 2, high = 4Output:8 224 1210 14

BST_LCA

A. 简单方法 首先编写一个递归函数,打印给定级别的节点。然后在循环中从低到高调用递归函数。该方法的时间复杂度为O(n) 2. ) 我们可以打印节点 在O(n)时间内 使用基于队列的迭代级顺序遍历。其思想是进行简单的基于队列的级别顺序遍历。在进行有序遍历时,在末尾添加一个标记节点。每当我们看到一个标记节点,我们就会增加级别数。如果级别编号介于低和高之间,则打印节点。 以下是上述想法的实施。

C++

// A C++ program to print Nodes level by level between given two levels.
#include <bits/stdc++.h>
using namespace std;
/* A binary tree Node has key, pointer to left and right children */
struct Node
{
int key;
struct Node* left, *right;
};
/* Given a binary tree, print nodes from level number 'low' to level
number 'high'*/
void printLevels(Node* root, int low, int high)
{
queue <Node *> Q;
Node *marker = new Node; // Marker node to indicate end of level
int level = 1; // Initialize level number
// Enqueue the only first level node and marker node for end of level
Q.push(root);
Q.push(marker);
// Simple level order traversal loop
while (Q.empty() == false )
{
// Remove the front item from queue
Node *n = Q.front();
Q.pop();
// Check if end of level is reached
if (n == marker)
{
// print a new line and increment level number
cout << endl;
level++;
// Check if marker node was last node in queue or
// level number is beyond the given upper limit
if (Q.empty() == true || level > high) break ;
// Enqueue the marker for end of next level
Q.push(marker);
// If this is marker, then we don't need print it
// and enqueue its children
continue ;
}
// If level is equal to or greater than given lower level,
// print it
if (level >= low)
cout << n->key << " " ;
// Enqueue children of non-marker node
if (n->left != NULL)  Q.push(n->left);
if (n->right != NULL) Q.push(n->right);
}
}
/* Helper function that allocates a new Node with the
given key and NULL left and right pointers. */
Node* newNode( int key)
{
Node* temp = new Node;
temp->key = key;
temp->left = temp->right = NULL;
return (temp);
}
/* Driver program to test above functions*/
int main()
{
// Let us construct the BST shown in the above figure
struct Node *root        = newNode(20);
root->left               = newNode(8);
root->right              = newNode(22);
root->left->left         = newNode(4);
root->left->right        = newNode(12);
root->left->right->left  = newNode(10);
root->left->right->right = newNode(14);
cout << "Level Order traversal between given two levels is" ;
printLevels(root, 2, 3);
return 0;
}


JAVA

// Java program to print Nodes level by level between given two levels
import java.util.LinkedList;
import java.util.Queue;
/* A binary tree Node has key, pointer to left and right children */
class Node
{
int data;
Node left, right;
public Node( int item)
{
data = item;
left = right = null ;
}
}
class BinaryTree
{
Node root;
/* Given a binary tree, print nodes from level number 'low' to level
number 'high'*/
void printLevels(Node node, int low, int high)
{
Queue<Node> Q = new LinkedList<>();
Node  marker = new Node( 4 ); // Marker node to indicate end of level
int level = 1 ; // Initialize level number
// Enqueue the only first level node and marker node for end of level
Q.add(node);
Q.add(marker);
// Simple level order traversal loop
while (Q.isEmpty() == false )
{
// Remove the front item from queue
Node  n = Q.peek();
Q.remove();
// Check if end of level is reached
if (n == marker)
{
// print a new line and increment level number
System.out.println( "" );
level++;
// Check if marker node was last node in queue or
// level number is beyond the given upper limit
if (Q.isEmpty() == true || level > high)
break ;
// Enqueue the marker for end of next level
Q.add(marker);
// If this is marker, then we don't need print it
// and enqueue its children
continue ;
}
// If level is equal to or greater than given lower level,
// print it
if (level >= low)
System.out.print( n.data + " " );
// Enqueue children of non-marker node
if (n.left != null )
Q.add(n.left);
if (n.right != null )
Q.add(n.right);
}
}
// Driver program to test for above functions
public static void main(String args[])
{
BinaryTree tree = new BinaryTree();
tree.root = new Node( 20 );
tree.root.left = new Node( 8 );
tree.root.right = new Node( 22 );
tree.root.left.left = new Node( 4 );
tree.root.left.right = new Node( 12 );
tree.root.left.right.left = new Node( 10 );
tree.root.left.right.right = new Node( 14 );
System.out.print( "Level Order traversal between given two levels is " );
tree.printLevels(tree.root, 2 , 3 );
}
}
// This code has been contributed by Mayank Jaiswal


Python3

# Python program to print nodes level by level between
# given two levels
# A binary tree node
class Node:
# Constructor to create a new node
def __init__( self , key):
self .key = key
self .left = None
self .right = None
# Given a binary tree, print nodes form level number 'low'
# to level number 'high'
def printLevels(root, low, high):
Q = []
marker = Node( 11114 ) # Marker node to indicate end of level
level = 1 # Initialize level number
# Enqueue the only first level node and marker node for
# end of level
Q.append(root)
Q.append(marker)
#print Q
# Simple level order traversal loop
while ( len (Q) > 0 ):
# Remove the front item from queue
n = Q[ 0 ]
Q.pop( 0 )
#print Q
# Check if end of level is reached
if n = = marker:
# print a new line and increment level number
print ()
level + = 1
# Check if marker node was last node in queue
# or level number is beyond the given upper limit
if len (Q) = = 0 or level > high:
break
# Enqueue the marker for end of next level
Q.append(marker)
# If this is marker, then we don't need print it
# and enqueue its children
continue
if level > = low:
print (n.key,end = " " )
# Enqueue children of non-marker node
if n.left is not None :
Q.append(n.left)
Q.append(n.right)
# Driver program to test the above function
root = Node( 20 )
root.left = Node( 8 )
root.right = Node( 22 )
root.left.left = Node( 4 )
root.left.right = Node( 12 )
root.left.right.left = Node( 10 )
root.left.right.right = Node( 14 )
print ( "Level Order Traversal between given two levels is" ,printLevels(root, 2 , 3 ))
# This code is contributed by Nikhil Kumar Singh(nickzuck_007)


C#

using System;
using System.Collections.Generic;
// c# program to print Nodes level by level between given two levels
/* A binary tree Node has key, pointer to left and right children */
public class Node
{
public int data;
public Node left, right;
public Node( int item)
{
data = item;
left = right = null ;
}
}
public class BinaryTree
{
public Node root;
/* Given a binary tree, print nodes from level number 'low' to level
number 'high'*/
public virtual void printLevels(Node node, int low, int high)
{
LinkedList<Node> Q = new LinkedList<Node>();
Node marker = new Node(4); // Marker node to indicate end of level
int level = 1; // Initialize level number
// Enqueue the only first level node and marker node for end of level
Q.AddLast(node);
Q.AddLast(marker);
// Simple level order traversal loop
while (Q.Count > 0)
{
// Remove the front item from queue
Node n = Q.First.Value;
Q.RemoveFirst();
// Check if end of level is reached
if (n == marker)
{
// print a new line and increment level number
Console.WriteLine( "" );
level++;
// Check if marker node was last node in queue or
// level number is beyond the given upper limit
if (Q.Count == 0 || level > high)
{
break ;
}
// Enqueue the marker for end of next level
Q.AddLast(marker);
// If this is marker, then we don't need print it
// and enqueue its children
continue ;
}
// If level is equal to or greater than given lower level,
// print it
if (level >= low)
{
Console.Write(n.data + " " );
}
// Enqueue children of non-marker node
if (n.left != null )
{
Q.AddLast(n.left);
}
if (n.right != null )
{
Q.AddLast(n.right);
}
}
}
// Driver program to test for above functions
public static void Main( string [] args)
{
BinaryTree tree = new BinaryTree();
tree.root = new Node(20);
tree.root.left = new Node(8);
tree.root.right = new Node(22);
tree.root.left.left = new Node(4);
tree.root.left.right = new Node(12);
tree.root.left.right.left = new Node(10);
tree.root.left.right.right = new Node(14);
Console.Write( "Level Order traversal between given two levels is " );
tree.printLevels(tree.root, 2, 3);
}
}
// This code is contributed by Shrikant13


Javascript

<script>
// JavaScript program to print Nodes
// level by level between given two levels
/* A binary tree Node has key, pointer to
left and right children */
class Node
{
constructor(item)
{
this .data = item;
this .left = null ;
this .right = null ;
}
}
var root = null ;
/* Given a binary tree, print nodes
from level number 'low' to level
number 'high'*/
function printLevels(node, low, high)
{
var Q = [];
var marker = new Node(4); // Marker node to indicate end of level
var level = 1; // Initialize level number
// Enqueue the only first level node and
// marker node for end of level
Q.push(node);
Q.push(marker);
// Simple level order traversal loop
while (Q.length > 0)
{
// Remove the front item from queue
var n = Q[0];
Q.shift();
// Check if end of level is reached
if (n == marker)
{
// print a new line and increment level number
document.write( "<br>" );
level++;
// Check if marker node was last node in queue or
// level number is beyond the given upper limit
if (Q.length == 0 || level > high)
{
break ;
}
// Enqueue the marker for end of next level
Q.push(marker);
// If this is marker, then we don't need print it
// and enqueue its children
continue ;
}
// If level is equal to or greater than given lower level,
// print it
if (level >= low)
{
document.write(n.data + " " );
}
// Enqueue children of non-marker node
if (n.left != null )
{
Q.push(n.left);
}
if (n.right != null )
{
Q.push(n.right);
}
}
}
// Driver program to test for above functions
root = new Node(20);
root.left = new Node(8);
root.right = new Node(22);
root.left.left = new Node(4);
root.left.right = new Node(12);
root.left.right.left = new Node(10);
root.left.right.right = new Node(14);
document.write( "Level Order traversal between given two levels is " );
printLevels(root, 2, 3);
</script>


输出

Level Order traversal between given two levels is8 224 12 

上述方法的时间复杂度为O(n),因为它进行简单的水平顺序遍历。

本文由 直率的 。如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请发表评论

© 版权声明
THE END
喜欢就支持一下吧
点赞14 分享