如何检查两条给定线段是否相交?

给定两条线段 (p1,q1) (p2,q2), 找出给定的线段是否相互相交。 在讨论解决方案之前,让我们先定义 方向 .平面中有序三元组点的方向可以是 –逆时针 -顺时针 –共线

null

下图显示了不同的可能方向( A. , B , C )

图片[1]-如何检查两条给定线段是否相交?-yiteyi-C++库

定位在这里有什么用处? 两部分 (p1,q1) (p2,q2) 当且仅当下列两个条件之一得到验证时相交

1. 一般情况: – ( p1 , q1 , p2 )及( p1 , q1 , 问题2 )有不同的方向和 – ( p2 , 问题2 , p1 )及( p2 , 问题2 , q1 )有不同的方向。

例如:

图片[2]-如何检查两条给定线段是否相交?-yiteyi-C++库

2. 特例 – ( p1 , q1 , p2 ), ( p1 , q1 , 问题2 ), ( p2 , 问题2 , p1 ),及( p2 , 问题2 , q1 )都是共线的 ——x射线投影( p1 , q1 )及( p2 , 问题2 )相交 –的y-投影( p1 , q1 )及( p2 , 问题2 )相交

例如:

图片[3]-如何检查两条给定线段是否相交?-yiteyi-C++库

以下是基于上述思想的实现。

C++

// A C++ program to check if two given line segments intersect
#include <iostream>
using namespace std;
struct Point
{
int x;
int y;
};
// Given three collinear points p, q, r, the function checks if
// point q lies on line segment 'pr'
bool onSegment(Point p, Point q, Point r)
{
if (q.x <= max(p.x, r.x) && q.x >= min(p.x, r.x) &&
q.y <= max(p.y, r.y) && q.y >= min(p.y, r.y))
return true ;
return false ;
}
// To find orientation of ordered triplet (p, q, r).
// The function returns following values
// 0 --> p, q and r are collinear
// 1 --> Clockwise
// 2 --> Counterclockwise
int orientation(Point p, Point q, Point r)
{
// for details of below formula.
int val = (q.y - p.y) * (r.x - q.x) -
(q.x - p.x) * (r.y - q.y);
if (val == 0) return 0; // collinear
return (val > 0)? 1: 2; // clock or counterclock wise
}
// The main function that returns true if line segment 'p1q1'
// and 'p2q2' intersect.
bool doIntersect(Point p1, Point q1, Point p2, Point q2)
{
// Find the four orientations needed for general and
// special cases
int o1 = orientation(p1, q1, p2);
int o2 = orientation(p1, q1, q2);
int o3 = orientation(p2, q2, p1);
int o4 = orientation(p2, q2, q1);
// General case
if (o1 != o2 && o3 != o4)
return true ;
// Special Cases
// p1, q1 and p2 are collinear and p2 lies on segment p1q1
if (o1 == 0 && onSegment(p1, p2, q1)) return true ;
// p1, q1 and q2 are collinear and q2 lies on segment p1q1
if (o2 == 0 && onSegment(p1, q2, q1)) return true ;
// p2, q2 and p1 are collinear and p1 lies on segment p2q2
if (o3 == 0 && onSegment(p2, p1, q2)) return true ;
// p2, q2 and q1 are collinear and q1 lies on segment p2q2
if (o4 == 0 && onSegment(p2, q1, q2)) return true ;
return false ; // Doesn't fall in any of the above cases
}
// Driver program to test above functions
int main()
{
struct Point p1 = {1, 1}, q1 = {10, 1};
struct Point p2 = {1, 2}, q2 = {10, 2};
doIntersect(p1, q1, p2, q2)? cout << "Yes" : cout << "No" ;
p1 = {10, 0}, q1 = {0, 10};
p2 = {0, 0}, q2 = {10, 10};
doIntersect(p1, q1, p2, q2)? cout << "Yes" : cout << "No" ;
p1 = {-5, -5}, q1 = {0, 0};
p2 = {1, 1}, q2 = {10, 10};
doIntersect(p1, q1, p2, q2)? cout << "Yes" : cout << "No" ;
return 0;
}


JAVA

// Java program to check if two given line segments intersect
class GFG
{
static class Point
{
int x;
int y;
public Point( int x, int y)
{
this .x = x;
this .y = y;
}
};
// Given three collinear points p, q, r, the function checks if
// point q lies on line segment 'pr'
static boolean onSegment(Point p, Point q, Point r)
{
if (q.x <= Math.max(p.x, r.x) && q.x >= Math.min(p.x, r.x) &&
q.y <= Math.max(p.y, r.y) && q.y >= Math.min(p.y, r.y))
return true ;
return false ;
}
// To find orientation of ordered triplet (p, q, r).
// The function returns following values
// 0 --> p, q and r are collinear
// 1 --> Clockwise
// 2 --> Counterclockwise
static int orientation(Point p, Point q, Point r)
{
// for details of below formula.
int val = (q.y - p.y) * (r.x - q.x) -
(q.x - p.x) * (r.y - q.y);
if (val == 0 ) return 0 ; // collinear
return (val > 0 )? 1 : 2 ; // clock or counterclock wise
}
// The main function that returns true if line segment 'p1q1'
// and 'p2q2' intersect.
static boolean doIntersect(Point p1, Point q1, Point p2, Point q2)
{
// Find the four orientations needed for general and
// special cases
int o1 = orientation(p1, q1, p2);
int o2 = orientation(p1, q1, q2);
int o3 = orientation(p2, q2, p1);
int o4 = orientation(p2, q2, q1);
// General case
if (o1 != o2 && o3 != o4)
return true ;
// Special Cases
// p1, q1 and p2 are collinear and p2 lies on segment p1q1
if (o1 == 0 && onSegment(p1, p2, q1)) return true ;
// p1, q1 and q2 are collinear and q2 lies on segment p1q1
if (o2 == 0 && onSegment(p1, q2, q1)) return true ;
// p2, q2 and p1 are collinear and p1 lies on segment p2q2
if (o3 == 0 && onSegment(p2, p1, q2)) return true ;
// p2, q2 and q1 are collinear and q1 lies on segment p2q2
if (o4 == 0 && onSegment(p2, q1, q2)) return true ;
return false ; // Doesn't fall in any of the above cases
}
// Driver code
public static void main(String[] args)
{
Point p1 = new Point( 1 , 1 );
Point q1 = new Point( 10 , 1 );
Point p2 = new Point( 1 , 2 );
Point q2 = new Point( 10 , 2 );
if (doIntersect(p1, q1, p2, q2))
System.out.println( "Yes" );
else
System.out.println( "No" );
p1 = new Point( 10 , 1 ); q1 = new Point( 0 , 10 );
p2 = new Point( 0 , 0 ); q2 = new Point( 10 , 10 );
if (doIntersect(p1, q1, p2, q2))
System.out.println( "Yes" );
else
System.out.println( "No" );
p1 = new Point(- 5 , - 5 ); q1 = new Point( 0 , 0 );
p2 = new Point( 1 , 1 ); q2 = new Point( 10 , 10 );;
if (doIntersect(p1, q1, p2, q2))
System.out.println( "Yes" );
else
System.out.println( "No" );
}
}
// This code is contributed by Princi Singh


Python3

# A Python3 program to find if 2 given line segments intersect or not
class Point:
def __init__( self , x, y):
self .x = x
self .y = y
# Given three collinear points p, q, r, the function checks if
# point q lies on line segment 'pr'
def onSegment(p, q, r):
if ( (q.x < = max (p.x, r.x)) and (q.x > = min (p.x, r.x)) and
(q.y < = max (p.y, r.y)) and (q.y > = min (p.y, r.y))):
return True
return False
def orientation(p, q, r):
# to find the orientation of an ordered triplet (p,q,r)
# function returns the following values:
# 0 : Collinear points
# 1 : Clockwise points
# 2 : Counterclockwise
# for details of below formula.
val = ( float (q.y - p.y) * (r.x - q.x)) - ( float (q.x - p.x) * (r.y - q.y))
if (val > 0 ):
# Clockwise orientation
return 1
elif (val < 0 ):
# Counterclockwise orientation
return 2
else :
# Collinear orientation
return 0
# The main function that returns true if
# the line segment 'p1q1' and 'p2q2' intersect.
def doIntersect(p1,q1,p2,q2):
# Find the 4 orientations required for
# the general and special cases
o1 = orientation(p1, q1, p2)
o2 = orientation(p1, q1, q2)
o3 = orientation(p2, q2, p1)
o4 = orientation(p2, q2, q1)
# General case
if ((o1 ! = o2) and (o3 ! = o4)):
return True
# Special Cases
# p1 , q1 and p2 are collinear and p2 lies on segment p1q1
if ((o1 = = 0 ) and onSegment(p1, p2, q1)):
return True
# p1 , q1 and q2 are collinear and q2 lies on segment p1q1
if ((o2 = = 0 ) and onSegment(p1, q2, q1)):
return True
# p2 , q2 and p1 are collinear and p1 lies on segment p2q2
if ((o3 = = 0 ) and onSegment(p2, p1, q2)):
return True
# p2 , q2 and q1 are collinear and q1 lies on segment p2q2
if ((o4 = = 0 ) and onSegment(p2, q1, q2)):
return True
# If none of the cases
return False
# Driver program to test above functions:
p1 = Point( 1 , 1 )
q1 = Point( 10 , 1 )
p2 = Point( 1 , 2 )
q2 = Point( 10 , 2 )
if doIntersect(p1, q1, p2, q2):
print ( "Yes" )
else :
print ( "No" )
p1 = Point( 10 , 0 )
q1 = Point( 0 , 10 )
p2 = Point( 0 , 0 )
q2 = Point( 10 , 10 )
if doIntersect(p1, q1, p2, q2):
print ( "Yes" )
else :
print ( "No" )
p1 = Point( - 5 , - 5 )
q1 = Point( 0 , 0 )
p2 = Point( 1 , 1 )
q2 = Point( 10 , 10 )
if doIntersect(p1, q1, p2, q2):
print ( "Yes" )
else :
print ( "No" )
# This code is contributed by Ansh Riyal


C#

// C# program to check if two given line segments intersect
using System;
using System.Collections.Generic;
class GFG
{
public class Point
{
public int x;
public int y;
public Point( int x, int y)
{
this .x = x;
this .y = y;
}
};
// Given three collinear points p, q, r, the function checks if
// point q lies on line segment 'pr'
static Boolean onSegment(Point p, Point q, Point r)
{
if (q.x <= Math.Max(p.x, r.x) && q.x >= Math.Min(p.x, r.x) &&
q.y <= Math.Max(p.y, r.y) && q.y >= Math.Min(p.y, r.y))
return true ;
return false ;
}
// To find orientation of ordered triplet (p, q, r).
// The function returns following values
// 0 --> p, q and r are collinear
// 1 --> Clockwise
// 2 --> Counterclockwise
static int orientation(Point p, Point q, Point r)
{
// for details of below formula.
int val = (q.y - p.y) * (r.x - q.x) -
(q.x - p.x) * (r.y - q.y);
if (val == 0) return 0; // collinear
return (val > 0)? 1: 2; // clock or counterclock wise
}
// The main function that returns true if line segment 'p1q1'
// and 'p2q2' intersect.
static Boolean doIntersect(Point p1, Point q1, Point p2, Point q2)
{
// Find the four orientations needed for general and
// special cases
int o1 = orientation(p1, q1, p2);
int o2 = orientation(p1, q1, q2);
int o3 = orientation(p2, q2, p1);
int o4 = orientation(p2, q2, q1);
// General case
if (o1 != o2 && o3 != o4)
return true ;
// Special Cases
// p1, q1 and p2 are collinear and p2 lies on segment p1q1
if (o1 == 0 && onSegment(p1, p2, q1)) return true ;
// p1, q1 and q2 are collinear and q2 lies on segment p1q1
if (o2 == 0 && onSegment(p1, q2, q1)) return true ;
// p2, q2 and p1 are collinear and p1 lies on segment p2q2
if (o3 == 0 && onSegment(p2, p1, q2)) return true ;
// p2, q2 and q1 are collinear and q1 lies on segment p2q2
if (o4 == 0 && onSegment(p2, q1, q2)) return true ;
return false ; // Doesn't fall in any of the above cases
}
// Driver code
public static void Main(String[] args)
{
Point p1 = new Point(1, 1);
Point q1 = new Point(10, 1);
Point p2 = new Point(1, 2);
Point q2 = new Point(10, 2);
if (doIntersect(p1, q1, p2, q2))
Console.WriteLine( "Yes" );
else
Console.WriteLine( "No" );
p1 = new Point(10, 1); q1 = new Point(0, 10);
p2 = new Point(0, 0); q2 = new Point(10, 10);
if (doIntersect(p1, q1, p2, q2))
Console.WriteLine( "Yes" );
else
Console.WriteLine( "No" );
p1 = new Point(-5, -5); q1 = new Point(0, 0);
p2 = new Point(1, 1); q2 = new Point(10, 10);;
if (doIntersect(p1, q1, p2, q2))
Console.WriteLine( "Yes" );
else
Console.WriteLine( "No" );
}
}
/* This code contributed by PrinciRaj1992 */


Javascript

<script>
// Javascript program to check if two given line segments intersect
class Point
{
constructor(x, y)
{
this .x = x;
this .y = y;
}
}
// Given three collinear points p, q, r, the function checks if
// point q lies on line segment 'pr'
function onSegment(p, q, r)
{
if (q.x <= Math.max(p.x, r.x) && q.x >= Math.min(p.x, r.x) &&
q.y <= Math.max(p.y, r.y) && q.y >= Math.min(p.y, r.y))
return true ;
return false ;
}
// To find orientation of ordered triplet (p, q, r).
// The function returns following values
// 0 --> p, q and r are collinear
// 1 --> Clockwise
// 2 --> Counterclockwise
function orientation(p, q, r)
{
// for details of below formula.
let val = (q.y - p.y) * (r.x - q.x) -
(q.x - p.x) * (r.y - q.y);
if (val == 0) return 0; // collinear
return (val > 0)? 1: 2; // clock or counterclock wise
}
// The main function that returns true if line segment 'p1q1'
// and 'p2q2' intersect.
function doIntersect(p1, q1, p2, q2)
{
// Find the four orientations needed for general and
// special cases
let o1 = orientation(p1, q1, p2);
let o2 = orientation(p1, q1, q2);
let o3 = orientation(p2, q2, p1);
let o4 = orientation(p2, q2, q1);
// General case
if (o1 != o2 && o3 != o4)
return true ;
// Special Cases
// p1, q1 and p2 are collinear and p2 lies on segment p1q1
if (o1 == 0 && onSegment(p1, p2, q1)) return true ;
// p1, q1 and q2 are collinear and q2 lies on segment p1q1
if (o2 == 0 && onSegment(p1, q2, q1)) return true ;
// p2, q2 and p1 are collinear and p1 lies on segment p2q2
if (o3 == 0 && onSegment(p2, p1, q2)) return true ;
// p2, q2 and q1 are collinear and q1 lies on segment p2q2
if (o4 == 0 && onSegment(p2, q1, q2)) return true ;
return false ; // Doesn't fall in any of the above cases
}
// Driver code
let p1 = new Point(1, 1);
let q1 = new Point(10, 1);
let p2 = new Point(1, 2);
let q2 = new Point(10, 2);
if (doIntersect(p1, q1, p2, q2))
document.write( "Yes<br>" );
else
document.write( "No<br>" );
p1 = new Point(10, 1); q1 = new Point(0, 10);
p2 = new Point(0, 0); q2 = new Point(10, 10);
if (doIntersect(p1, q1, p2, q2))
document.write( "Yes<br>" );
else
document.write( "No<br>" );
p1 = new Point(-5, -5); q1 = new Point(0, 0);
p2 = new Point(1, 1); q2 = new Point(10, 10);;
if (doIntersect(p1, q1, p2, q2))
document.write( "Yes<br>" );
else
document.write( "No<br>" );
// This code is contributed by avanitrachhadiya2155
</script>


输出:

NoYesNo

时间复杂性: O(1)

资料来源: http://www.dcs.gla.ac.uk/~pat/52233/slides/Geometry1x1。pdf 算法导论第三版由Clifford Stein、Thomas H.Cormen、Charles E.Leiserson、Ronald L.Rivest编写 如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写评论

© 版权声明
THE END
喜欢就支持一下吧
点赞10 分享