最长公共子序列| DP-4

我们讨论了重叠子问题和最优子结构性质 第一组 第二组 分别地我们还讨论了中的一个示例问题 第三组 .让我们讨论最长公共子序列(LCS)问题,作为可以使用动态规划解决的又一个示例问题。

null

LCS问题声明: 给定两个序列,求两个序列中最长子序列的长度。子序列是以相同的相对顺序出现的序列,但不一定是连续的。例如,“abc”、“abg”、“bdf”、“aeg”、“acefg”。。etc是“abcdefg”的子序列。

为了找出蛮力方法的复杂性,我们首先需要知道长度为n的字符串可能不同的子序列的数量,也就是说,找到长度为1,2,。。n-1。回想一下置换和组合理论,1个元素的组合数是 N C 1. .包含2个元素的组合数为 N C 2. 等等等等。我们知道 N C 0 + N C 1. + N C 2. + … N C N = 2 N 所以长度为n的字符串有2 N – 1个不同的可能子序列,因为我们不考虑长度为0的子序列。这意味着蛮力方法的时间复杂度为O(n*2) N ).请注意,检查两个字符串是否共用一个子序列需要O(n)时间。这种时间复杂性可以通过使用动态规划来提高。

这是一个经典的计算机科学问题,是计算机科学的基础 差别 (输出两个文件之间差异的文件比较程序),并在生物信息学中有应用。

例如: 输入序列“ABCDGH”和“AEDFHR”的LCS是长度为3的“ADH”。 输入序列“AGGTAB”和“GXTXAYB”的LCS是长度为4的“GTAB”。

该问题的简单解决方案是生成两个给定序列的所有子序列,并找到最长的匹配子序列。这个解决方案的时间复杂度是指数的。让我们看看这个问题如何同时具有动态规划(DP)问题的两个重要性质。

1) 最佳子结构: 设输入序列分别为长度为m和n的X[0..m-1]和Y[0..n-1]。设L(X[0..m-1],Y[0..n-1])是两个序列X和Y的LCS的长度。下面是L(X[0..m-1],Y[0..n-1])的递归定义。

如果两个序列的最后一个字符匹配(或X[m-1]==Y[n-1]),则 L(X[0..m-1],Y[0..n-1])=1+L(X[0..m-2],Y[0..n-2])

如果两个序列的最后一个字符不匹配(或X[m-1]!=Y[n-1]),则 L(X[0..m-1],Y[0..n-1])=MAX(L(X[0..m-2],Y[0..n-1]),L(X[0..m-1],Y[0..n-2]))

例如: 1)考虑输入字符串“AgPaTb”和“GXTXAYB”。最后一个字符与字符串匹配。因此,LCS的长度可以写为: L(“AGGTAB”、“GXTXAYB”)=1+L(“AGGTA”、“GXTXAY”)

longest-common-subsequence

2)考虑输入字符串“ABCDGH”和“AEDFHR”。最后的字符与字符串不匹配。因此,LCS的长度可以写成: L(“ABCDGH”、“AEDFHR”)=MAX(L(“ABCDG”、“AEDFH R (“ABCDG H “,“AEDFH”)) 因此,LCS问题具有最优子结构性质,因为主要问题可以用子问题的解来解决。

2) 重叠子问题: 下面是LCS问题的简单递归实现。实现简单地遵循上面提到的递归结构。

C++

/* A Naive recursive implementation of LCS problem */
#include <bits/stdc++.h>
using namespace std;
/* Returns length of LCS for X[0..m-1], Y[0..n-1] */
int lcs( char *X, char *Y, int m, int n )
{
if (m == 0 || n == 0)
return 0;
if (X[m-1] == Y[n-1])
return 1 + lcs(X, Y, m-1, n-1);
else
return max(lcs(X, Y, m, n-1), lcs(X, Y, m-1, n));
}
/* Driver code */
int main()
{
char X[] = "AGGTAB" ;
char Y[] = "GXTXAYB" ;
int m = strlen (X);
int n = strlen (Y);
cout<< "Length of LCS is " << lcs( X, Y, m, n ) ;
return 0;
}
// This code is contributed by rathbhupendra


C

/* A Naive recursive implementation of LCS problem */
#include<bits/stdc++.h>
int max( int a, int b);
/* Returns length of LCS for X[0..m-1], Y[0..n-1] */
int lcs( char *X, char *Y, int m, int n )
{
if (m == 0 || n == 0)
return 0;
if (X[m-1] == Y[n-1])
return 1 + lcs(X, Y, m-1, n-1);
else
return max(lcs(X, Y, m, n-1), lcs(X, Y, m-1, n));
}
/* Utility function to get max of 2 integers */
int max( int a, int b)
{
return (a > b)? a : b;
}
/* Driver program to test above function */
int main()
{
char X[] = "AGGTAB" ;
char Y[] = "GXTXAYB" ;
int m = strlen (X);
int n = strlen (Y);
printf ( "Length of LCS is %d" , lcs( X, Y, m, n ) );
return 0;
}


JAVA

/* A Naive recursive implementation of LCS problem in java*/
public class LongestCommonSubsequence
{
/* Returns length of LCS for X[0..m-1], Y[0..n-1] */
int lcs( char [] X, char [] Y, int m, int n )
{
if (m == 0 || n == 0 )
return 0 ;
if (X[m- 1 ] == Y[n- 1 ])
return 1 + lcs(X, Y, m- 1 , n- 1 );
else
return max(lcs(X, Y, m, n- 1 ), lcs(X, Y, m- 1 , n));
}
/* Utility function to get max of 2 integers */
int max( int a, int b)
{
return (a > b)? a : b;
}
public static void main(String[] args)
{
LongestCommonSubsequence lcs = new LongestCommonSubsequence();
String s1 = "AGGTAB" ;
String s2 = "GXTXAYB" ;
char [] X=s1.toCharArray();
char [] Y=s2.toCharArray();
int m = X.length;
int n = Y.length;
System.out.println( "Length of LCS is" + " " +
lcs.lcs( X, Y, m, n ) );
}
}
// This Code is Contributed by Saket Kumar


Python3

# A Naive recursive Python implementation of LCS problem
def lcs(X, Y, m, n):
if m = = 0 or n = = 0 :
return 0
elif X[m - 1 ] = = Y[n - 1 ]:
return 1 + lcs(X, Y, m - 1 , n - 1 );
else :
return max (lcs(X, Y, m, n - 1 ), lcs(X, Y, m - 1 , n));
# Driver program to test the above function
X = "AGGTAB"
Y = "GXTXAYB"
print ( "Length of LCS is " , lcs(X , Y, len (X), len (Y)) )


C#

/* C# Naive recursive implementation of LCS problem */
using System;
class GFG
{
/* Returns length of LCS for X[0..m-1], Y[0..n-1] */
static int lcs( char [] X, char [] Y, int m, int n )
{
if (m == 0 || n == 0)
return 0;
if (X[m - 1] == Y[n - 1])
return 1 + lcs(X, Y, m - 1, n - 1);
else
return max(lcs(X, Y, m, n - 1), lcs(X, Y, m - 1, n));
}
/* Utility function to get max of 2 integers */
static int max( int a, int b)
{
return (a > b)? a : b;
}
public static void Main()
{
String s1 = "AGGTAB" ;
String s2 = "GXTXAYB" ;
char [] X=s1.ToCharArray();
char [] Y=s2.ToCharArray();
int m = X.Length;
int n = Y.Length;
Console.Write( "Length of LCS is" + " "
+lcs( X, Y, m, n ) );
}
}
// This code is Contributed by Sam007


PHP

<?php
// A Naive recursive PHP
// implementation of LCS problem
function lcs( $X , $Y , $m , $n )
{
if ( $m == 0 || $n == 0)
return 0;
else if ( $X [ $m - 1] == $Y [ $n - 1])
return 1 + lcs( $X , $Y ,
$m - 1, $n - 1);
else
return max(lcs( $X , $Y , $m , $n - 1),
lcs( $X , $Y , $m - 1, $n ));
}
// Driver Code
$X = "AGGTAB" ;
$Y = "GXTXAYB" ;
echo "Length of LCS is " ;
echo lcs( $X , $Y , strlen ( $X ),
strlen ( $Y ));
// This code is contributed
// by Shivi_Aggarwal
?>


Javascript

<script>
/* A Naive recursive implementation of LCS problem in java*/
/* Returns length of LCS for X[0..m-1], Y[0..n-1] */
function lcs(  X,  Y , m , n )
{
if (m == 0 || n == 0)
return 0;
if (X[m-1] == Y[n-1])
return 1 + lcs(X, Y, m-1, n-1);
else
return max(lcs(X, Y, m, n-1), lcs(X, Y, m-1, n));
}
/* Utility function to get max of 2 integers */
function max(a , b)
{
return (a > b)? a : b;
}
var s1 = "AGGTAB" ;
var s2 = "GXTXAYB" ;
var X=s1;
var Y=s2;
var m = X.length;
var n = Y.length;
document.write( "Length of LCS is" + " " +
lcs( X, Y, m, n ) );
// This code contributed by umadevi9616
</script>


输出:

Length of LCS is 4

在最坏情况下,上述朴素递归方法的时间复杂度为O(2^n),最坏情况发生在X和Y的所有字符不匹配时,即LCS的长度为0。

考虑到上述实现,下面是输入字符串“AXYT”和“AYZX”的部分递归树

                         lcs("AXYT", "AYZX")                       /                          lcs("AXY", "AYZX")            lcs("AXYT", "AYZ")         /                              /               lcs("AX", "AYZX") lcs("AXY", "AYZ")   lcs("AXY", "AYZ") lcs("AXYT", "AY")

在上面的部分递归树中,lcs(“AXY”、“AYZ”)将被求解两次。如果我们画出完整的递归树,那么我们可以看到有许多子问题被一次又一次地解决。因此,该问题具有重叠子结构的性质,通过记忆或制表可以避免相同子问题的重新计算。以下是LCS问题的列表实现。

Python3

def lcs(s1 , s2):
m, n = len (s1), len (s2)
prev, cur = [ 0 ] * (n + 1 ), [ 0 ] * (n + 1 )
for i in range ( 1 , m + 1 ):
for j in range ( 1 , n + 1 ):
if s1[i - 1 ] = = s2[j - 1 ]:
cur[j] = 1 + prev[j - 1 ]
else :
if cur[j - 1 ] > prev[j]:
cur[j] = cur[j - 1 ]
else :
cur[j] = prev[j]
cur, prev = prev, cur
return prev[n]
#end of function lcs
# Driver program to test the above function
s1 = "AGGTAB"
s2 = "GXTXAYB"
print ( "Length of LCS is " , lcs(s1, s2))
# BY PRASHANT SHEKHAR MISHRA


C

/* Dynamic Programming C implementation of LCS problem */
#include<bits/stdc++.h>
int max( int a, int b);
/* Returns length of LCS for X[0..m-1], Y[0..n-1] */
int lcs( char *X, char *Y, int m, int n )
{
int L[m+1][n+1];
int i, j;
/* Following steps build L[m+1][n+1] in bottom up fashion. Note
that L[i][j] contains length of LCS of X[0..i-1] and Y[0..j-1] */
for (i=0; i<=m; i++)
{
for (j=0; j<=n; j++)
{
if (i == 0 || j == 0)
L[i][j] = 0;
else if (X[i-1] == Y[j-1])
L[i][j] = L[i-1][j-1] + 1;
else
L[i][j] = max(L[i-1][j], L[i][j-1]);
}
}
/* L[m][n] contains length of LCS for X[0..n-1] and Y[0..m-1] */
return L[m][n];
}
/* Utility function to get max of 2 integers */
int max( int a, int b)
{
return (a > b)? a : b;
}
/* Driver program to test above function */
int main()
{
char X[] = "AGGTAB" ;
char Y[] = "GXTXAYB" ;
int m = strlen (X);
int n = strlen (Y);
printf ( "Length of LCS is %d" , lcs( X, Y, m, n ) );
return 0;
}


JAVA

/* Dynamic Programming Java implementation of LCS problem */
public class LongestCommonSubsequence
{
/* Returns length of LCS for X[0..m-1], Y[0..n-1] */
int lcs( char [] X, char [] Y, int m, int n )
{
int L[][] = new int [m+ 1 ][n+ 1 ];
/* Following steps build L[m+1][n+1] in bottom up fashion. Note
that L[i][j] contains length of LCS of X[0..i-1] and Y[0..j-1] */
for ( int i= 0 ; i<=m; i++)
{
for ( int j= 0 ; j<=n; j++)
{
if (i == 0 || j == 0 )
L[i][j] = 0 ;
else if (X[i- 1 ] == Y[j- 1 ])
L[i][j] = L[i- 1 ][j- 1 ] + 1 ;
else
L[i][j] = max(L[i- 1 ][j], L[i][j- 1 ]);
}
}
return L[m][n];
}
/* Utility function to get max of 2 integers */
int max( int a, int b)
{
return (a > b)? a : b;
}
public static void main(String[] args)
{
LongestCommonSubsequence lcs = new LongestCommonSubsequence();
String s1 = "AGGTAB" ;
String s2 = "GXTXAYB" ;
char [] X=s1.toCharArray();
char [] Y=s2.toCharArray();
int m = X.length;
int n = Y.length;
System.out.println( "Length of LCS is" + " " +
lcs.lcs( X, Y, m, n ) );
}
}
// This Code is Contributed by Saket Kumar


Python3

# Dynamic Programming implementation of LCS problem
def lcs(X , Y):
# find the length of the strings
m = len (X)
n = len (Y)
# declaring the array for storing the dp values
L = [[ None ] * (n + 1 ) for i in range (m + 1 )]
"""Following steps build L[m+1][n+1] in bottom up fashion
Note: L[i][j] contains length of LCS of X[0..i-1]
and Y[0..j-1]"""
for i in range (m + 1 ):
for j in range (n + 1 ):
if i = = 0 or j = = 0 :
L[i][j] = 0
elif X[i - 1 ] = = Y[j - 1 ]:
L[i][j] = L[i - 1 ][j - 1 ] + 1
else :
L[i][j] = max (L[i - 1 ][j] , L[i][j - 1 ])
# L[m][n] contains the length of LCS of X[0..n-1] & Y[0..m-1]
return L[m][n]
#end of function lcs
# Driver program to test the above function
X = "AGGTAB"
Y = "GXTXAYB"
print ( "Length of LCS is " , lcs(X, Y) )
# This code is contributed by Nikhil Kumar Singh(nickzuck_007)


C#

// Dynamic Programming C# implementation
// of LCS problem
using System;
class GFG
{
/* Returns length of LCS for X[0..m-1], Y[0..n-1] */
static int lcs( char [] X, char [] Y, int m, int n )
{
int [,]L = new int [m+1,n+1];
/* Following steps build L[m+1][n+1]
in bottom up fashion. Note
that L[i][j] contains length of
LCS of X[0..i-1] and Y[0..j-1] */
for ( int i = 0; i <= m; i++)
{
for ( int j = 0; j <= n; j++)
{
if (i == 0 || j == 0)
L[i, j] = 0;
else if (X[i - 1] == Y[j - 1])
L[i, j] = L[i - 1, j - 1] + 1;
else
L[i, j] = max(L[i - 1, j], L[i, j - 1]);
}
}
return L[m, n];
}
/* Utility function to get max of 2 integers */
static int max( int a, int b)
{
return (a > b)? a : b;
}
// Driver code
public static void Main()
{
String s1 = "AGGTAB" ;
String s2 = "GXTXAYB" ;
char [] X=s1.ToCharArray();
char [] Y=s2.ToCharArray();
int m = X.Length;
int n = Y.Length;
Console.Write( "Length of LCS is" + " " +lcs( X, Y, m, n ) );
}
}
// This Code is Contributed by Sam007


PHP

<?php
// Dynamic Programming C#
// implementation of LCS problem
function lcs( $X , $Y )
{
// find the length of the strings
$m = strlen ( $X );
$n = strlen ( $Y ) ;
// declaring the array for
// storing the dp values
/*Following steps build L[m+1][n+1]
in bottom up fashion .
Note: L[i][j] contains length of
LCS of X[0..i-1] and Y[0..j-1] */
for ( $i = 0; $i <= $m ; $i ++)
{
for ( $j = 0; $j <= $n ; $j ++)
{
if ( $i == 0 || $j == 0)
$L [ $i ][ $j ] = 0;
else if ( $X [ $i - 1] == $Y [ $j - 1])
$L [ $i ][ $j ] = $L [ $i - 1][ $j - 1] + 1;
else
$L [ $i ][ $j ] = max( $L [ $i - 1][ $j ],
$L [ $i ][ $j - 1]);
}
}
// L[m][n] contains the length of
// LCS of X[0..n-1] & Y[0..m-1]
return $L [ $m ][ $n ];
}
// Driver Code
$X = "AGGTAB" ;
$Y = "GXTXAYB" ;
echo "Length of LCS is " ;
echo lcs( $X , $Y );
// This code is contributed
// by Shivi_Aggarwal
?>


Javascript

<script>
// Dynamic Programming Java implementation of LCS problem
// Utility function to get max of 2 integers
function max(a, b)
{
if (a > b)
return a;
else
return b;
}
// Returns length of LCS for X[0..m-1], Y[0..n-1]
function lcs(X, Y, m, n)
{
var L = new Array(m + 1);
for ( var i = 0; i < L.length; i++)
{
L[i] = new Array(n + 1);
}
var i, j;
/* Following steps build L[m+1][n+1] in
bottom up fashion. Note that L[i][j]
contains length of LCS of X[0..i-1]
and Y[0..j-1] */
for (i = 0; i <= m; i++)
{
for (j = 0; j <= n; j++)
{
if (i == 0 || j == 0)
L[i][j] = 0;
else if (X[i - 1] == Y[j - 1])
L[i][j] = L[i - 1][j - 1] + 1;
else
L[i][j] = max(L[i - 1][j], L[i][j - 1]);
}
}
/* L[m][n] contains length of LCS
for X[0..n-1] and Y[0..m-1] */
return L[m][n];
}
// Driver code
var x = "AGGTAB" ;
var y = "GXTXAYB" ;
var m = x.length;
var n = y.length;
document.write( "Length of LCS is " + lcs(x, y, m, n));
// This code is contributed by akshitsaxenaa09
</script>


输出:

Length of LCS is 4

上述实现的时间复杂度为O(mn),这比朴素递归实现的最坏情况下的时间复杂度要好得多。 上述算法/代码只返回LCS的长度。请参阅下面的帖子来打印LCS。 打印最长公共子序列 您还可以在以下位置查看LCS的空间优化版本: LCS的空间优化解

如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写下评论。 最近基于LCS的文章!

参考资料: http://www.youtube.com/watch?v=V5hZoJ6uK-s http://www.algorithmist.com/index.php/Longest_Common_Subsequence http://www.ics.uci.edu/~eppstein/161/960229。html http://en.wikipedia.org/wiki/Longest_common_subsequence_problem

© 版权声明
THE END
喜欢就支持一下吧
点赞12 分享