检查八进制数的十进制表示是否可被7整除

给定一个八进制数N。任务是编写一个程序来检查给定八进制数N的十进制表示形式是否可被7整除。 例子 :

null
Input: N = 112Output: NOEquivalent Decimal = 747410 = 7 * 10 1 + 4 * 1001128 = 1 * 82 + 1 * 81 + 2 * 80Input: N = 25Output: YESDecimal Equivalent = 21

注意,8%7将返回1。因此,当我们展开八进制表示并取其模7时,所有的8次方在个别条件下都将减少到1。所以,如果八进制表示的所有数字之和可以被7整除,那么相应的十进制数可以被7整除。 以下是上述方法的实施情况:

C++

// CPP program to check if Decimal representation
// of an Octal number is divisible by 7 or not
#include <bits/stdc++.h>
using namespace std;
// Function to check Divisibility
int check( int n)
{
int sum = 0;
// Sum of all individual digits
while (n != 0) {
sum += n % 10;
n = n / 10;
}
// Condition
if (sum % 7 == 0)
return 1;
else
return 0;
}
// Driver Code
int main()
{
// Octal number
int n = 25;
(check(n) == 1) ? cout << "YES"
: cout << "NO" ;
return 0;
}


JAVA

// Java program to check if Decimal
// representation of an Octal number
// is divisible by 7 or not
import java.util.*;
import java.lang.*;
import java.io.*;
class GFG
{
// Function to check Divisibility
static int check( int n)
{
int sum = 0 ;
// Sum of all individual digits
while (n != 0 )
{
sum += n % 10 ;
n = n / 10 ;
}
// Condition
if (sum % 7 == 0 )
return 1 ;
else
return 0 ;
}
// Driver Code
public static void main(String args[])
{
// Octal number
int n = 25 ;
String s=(check(n) == 1 ) ?
"YES" : "NO" ;
System.out.println(s);
}
}
// This code is contributed
// by Subhadeep


Python 3

# Python 3 program to check if
# Decimal representation of an
# Octal number is divisible by
# 7 or not
# Function to check Divisibility
def check(n):
sum = 0
# Sum of all individual digits
while n ! = 0 :
sum + = n % 10
n = n / / 10
# Condition
if sum % 7 = = 0 :
return 1
else :
return 0
# Driver Code
if __name__ = = "__main__" :
# Octal number
n = 25
print (( "YES" ) if check(n) = = 1
else print ( "NO" ))
# This code is contributed
# by ChitraNayal


C#

// C# program to check if Decimal
// representation of an Octal
// number is divisible by 7 or not
using System;
class GFG
{
// Function to check Divisibility
static int check( int n)
{
int sum = 0;
// Sum of all individual digits
while (n != 0)
{
sum += n % 10;
n = n / 10;
}
// Condition
if (sum % 7 == 0)
return 1;
else
return 0;
}
// Driver Code
public static void Main(String []args)
{
// Octal number
int n = 25;
String s=(check(n) == 1) ?
"YES" : "NO" ;
Console.WriteLine(s);
}
}
// This code is contributed
// by Kirti_Mangal


PHP

<?php
// PHP program to check if
// Decimal representation of
// an Octal number is divisible
// by 7 or not
// Function to check Divisibility
function check( $n )
{
$sum = 0;
// Sum of all individual digits
while ( $n != 0)
{
$sum += $n % 10;
$n = (int)( $n / 10);
}
// Condition
if ( $sum % 7 == 0)
return 1;
else
return 0;
}
// Driver Code
// Octal number
$n = 25;
(check( $n ) == 1) ?
print ( "YES" ) :
print ( "NO" );
// This Code is contributed
// by mits
?>


Javascript

<script>
// Javascript program to check if Decimal representation
// of an Octal number is divisible by 7 or not
// Function to check Divisibility
function check(n)
{
let sum = 0;
// Sum of all individual digits
while (n != 0) {
sum += n % 10;
n = Math.floor(n / 10);
}
// Condition
if (sum % 7 == 0)
return 1;
else
return 0;
}
// Driver Code
// Octal number
let n = 25;
(check(n) == 1) ? document.write( "YES" )
: document.write( "NO" );
// This code is contributed by Mayank Tyagi
</script>


输出:

YES

© 版权声明
THE END
喜欢就支持一下吧
点赞14 分享