给定一个八进制数N。任务是编写一个程序来检查给定八进制数N的十进制表示形式是否可被7整除。 例子 :
null
Input: N = 112Output: NOEquivalent Decimal = 747410 = 7 * 10 1 + 4 * 1001128 = 1 * 82 + 1 * 81 + 2 * 80Input: N = 25Output: YESDecimal Equivalent = 21
注意,8%7将返回1。因此,当我们展开八进制表示并取其模7时,所有的8次方在个别条件下都将减少到1。所以,如果八进制表示的所有数字之和可以被7整除,那么相应的十进制数可以被7整除。 以下是上述方法的实施情况:
C++
// CPP program to check if Decimal representation // of an Octal number is divisible by 7 or not #include <bits/stdc++.h> using namespace std; // Function to check Divisibility int check( int n) { int sum = 0; // Sum of all individual digits while (n != 0) { sum += n % 10; n = n / 10; } // Condition if (sum % 7 == 0) return 1; else return 0; } // Driver Code int main() { // Octal number int n = 25; (check(n) == 1) ? cout << "YES" : cout << "NO" ; return 0; } |
JAVA
// Java program to check if Decimal // representation of an Octal number // is divisible by 7 or not import java.util.*; import java.lang.*; import java.io.*; class GFG { // Function to check Divisibility static int check( int n) { int sum = 0 ; // Sum of all individual digits while (n != 0 ) { sum += n % 10 ; n = n / 10 ; } // Condition if (sum % 7 == 0 ) return 1 ; else return 0 ; } // Driver Code public static void main(String args[]) { // Octal number int n = 25 ; String s=(check(n) == 1 ) ? "YES" : "NO" ; System.out.println(s); } } // This code is contributed // by Subhadeep |
Python 3
# Python 3 program to check if # Decimal representation of an # Octal number is divisible by # 7 or not # Function to check Divisibility def check(n): sum = 0 # Sum of all individual digits while n ! = 0 : sum + = n % 10 n = n / / 10 # Condition if sum % 7 = = 0 : return 1 else : return 0 # Driver Code if __name__ = = "__main__" : # Octal number n = 25 print (( "YES" ) if check(n) = = 1 else print ( "NO" )) # This code is contributed # by ChitraNayal |
C#
// C# program to check if Decimal // representation of an Octal // number is divisible by 7 or not using System; class GFG { // Function to check Divisibility static int check( int n) { int sum = 0; // Sum of all individual digits while (n != 0) { sum += n % 10; n = n / 10; } // Condition if (sum % 7 == 0) return 1; else return 0; } // Driver Code public static void Main(String []args) { // Octal number int n = 25; String s=(check(n) == 1) ? "YES" : "NO" ; Console.WriteLine(s); } } // This code is contributed // by Kirti_Mangal |
PHP
<?php // PHP program to check if // Decimal representation of // an Octal number is divisible // by 7 or not // Function to check Divisibility function check( $n ) { $sum = 0; // Sum of all individual digits while ( $n != 0) { $sum += $n % 10; $n = (int)( $n / 10); } // Condition if ( $sum % 7 == 0) return 1; else return 0; } // Driver Code // Octal number $n = 25; (check( $n ) == 1) ? print ( "YES" ) : print ( "NO" ); // This Code is contributed // by mits ?> |
Javascript
<script> // Javascript program to check if Decimal representation // of an Octal number is divisible by 7 or not // Function to check Divisibility function check(n) { let sum = 0; // Sum of all individual digits while (n != 0) { sum += n % 10; n = Math.floor(n / 10); } // Condition if (sum % 7 == 0) return 1; else return 0; } // Driver Code // Octal number let n = 25; (check(n) == 1) ? document.write( "YES" ) : document.write( "NO" ); // This code is contributed by Mayank Tyagi </script> |
输出:
YES
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END