计数积等于给定数|集2的三胞胎数

给定一组不同的整数(只考虑正数)和一个数“m”,求出乘积等于“m”的三元组数。 例如:

null
Input: arr[] = { 1, 4, 6, 2, 3, 8}              m = 24Output: 3Input: arr[] = { 0, 4, 6, 2, 3, 8}              m = 18Output: 0

前面已经讨论过一种具有O(n)额外空间的方法 邮递 在这篇文章中,我们将讨论一种具有O(1)空间复杂性的方法。 方法: 其想法是使用三指针技术:

  1. 对输入数组进行排序。
  2. 将第一个元素固定为[i],其中i是从0到数组大小–2。
  3. 在确定三元组的第一个元素后,使用 2分球技术。

以下是上述方法的实施情况:

C++

// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
// Function to count such triplets
int countTriplets( int arr[], int n, int m)
{
int count = 0;
// Sort the array
sort(arr, arr + n);
int end, start, mid;
// three pointer technique
for (end = n - 1; end >= 2; end--) {
int start = 0, mid = end - 1;
while (start < mid) {
// Calculate the product of a triplet
long int prod = arr[end] * arr[start] * arr[mid];
// Check if that product is greater than m,
// decrement mid
if (prod > m)
mid--;
// Check if that product is smaller than m,
// increment start
else if (prod < m)
start++;
// Check if that product is equal to m,
// decrement mid, increment start and
// increment the count of pairs
else if (prod == m) {
count++;
mid--;
start++;
}
}
}
return count;
}
// Drivers code
int main()
{
int arr[] = { 1, 1, 1, 1, 1, 1 };
int n = sizeof (arr) / sizeof (arr[0]);
int m = 1;
cout << countTriplets(arr, n, m);
return 0;
}


JAVA

// Java implementation of
// above approach
import java.io.*;
import java.util.*;
class GFG
{
// Function to count such triplets
static int countTriplets( int arr[],
int n, int m)
{
int count = 0 ;
// Sort the array
Arrays.sort(arr);
int end, start, mid;
// three pointer technique
for (end = n - 1 ; end >= 2 ; end--)
{
start = 0 ; mid = end - 1 ;
while (start < mid)
{
// Calculate the product
// of a triplet
long prod = arr[end] *
arr[start] *
arr[mid];
// Check if that product
// is greater than m,
// decrement mid
if (prod > m)
mid--;
// Check if that product
// is smaller than m,
// increment start
else if (prod < m)
start++;
// Check if that product is equal
// to m, decrement mid, increment
// start and increment the
// count of pairs
else if (prod == m)
{
count++;
mid--;
start++;
}
}
}
return count;
}
// Driver code
public static void main (String[] args)
{
int []arr = { 1 , 1 , 1 , 1 , 1 , 1 };
int n = arr.length;
int m = 1 ;
System.out.println(countTriplets(arr, n, m));
}
}
// This code is contributed
// by inder_verma.


Python3

# Python3 implementation
# of above approach
# Function to count such triplets
def countTriplets(arr, n, m):
count = 0
# Sort the array
arr.sort()
# three pointer technique
for end in range (n - 1 , 1 , - 1 ) :
start = 0
mid = end - 1
while (start < mid) :
# Calculate the product
# of a triplet
prod = (arr[end] *
arr[start] * arr[mid])
# Check if that product is
# greater than m, decrement mid
if (prod > m):
mid - = 1
# Check if that product is
# smaller than m, increment start
elif (prod < m):
start + = 1
# Check if that product is equal
# to m, decrement mid, increment
# start and increment the count
# of pairs
elif (prod = = m):
count + = 1
mid - = 1
start + = 1
return count
# Drivers code
if __name__ = = "__main__" :
arr = [ 1 , 1 , 1 , 1 , 1 , 1 ]
n = len (arr)
m = 1
print (countTriplets(arr, n, m))
# This code is contributed
# by ChitraNayal


C#

// C# implementation of above approach
using System;
class GFG
{
// Function to count such triplets
static int countTriplets( int []arr,
int n, int m)
{
int count = 0;
// Sort the array
Array.Sort(arr);
int end, start, mid;
// three pointer technique
for (end = n - 1; end >= 2; end--)
{
start = 0; mid = end - 1;
while (start < mid)
{
// Calculate the product
// of a triplet
long prod = arr[end] *
arr[start] *
arr[mid];
// Check if that product
// is greater than m,
// decrement mid
if (prod > m)
mid--;
// Check if that product
// is smaller than m,
// increment start
else if (prod < m)
start++;
// Check if that product
// is equal to m,
// decrement mid, increment
// start and increment the
// count of pairs
else if (prod == m)
{
count++;
mid--;
start++;
}
}
}
return count;
}
// Driver code
public static void Main (String []args)
{
int []arr = { 1, 1, 1, 1, 1, 1 };
int n = arr.Length;
int m = 1;
Console.WriteLine(countTriplets(arr, n, m));
}
}
// This code is contributed
// by Arnab Kundu


PHP

<?php
// PHP  implementation of above approach
// Function to count such triplets
function countTriplets( $arr , $n , $m )
{
$count = 0;
// Sort the array
sort( $arr );
$end ; $start ; $mid ;
// three pointer technique
for ( $end = $n - 1; $end >= 2; $end --) {
$start = 0;
$mid = $end - 1;
while ( $start < $mid ) {
// Calculate the product of a triplet
$prod = $arr [ $end ] * $arr [ $start ] * $arr [ $mid ];
// Check if that product is greater than m,
// decrement mid
if ( $prod > $m )
$mid --;
// Check if that product is smaller than m,
// increment start
else if ( $prod < $m )
$start ++;
// Check if that product is equal to m,
// decrement mid, increment start and
// increment the count of pairs
else if ( $prod == $m ) {
$count ++;
$mid --;
$start ++;
}
}
}
return $count ;
}
// Drivers code
$arr = array ( 1, 1, 1, 1, 1, 1 );
$n = sizeof( $arr ) / sizeof( $arr [0]);
$m = 1;
echo countTriplets( $arr , $n , $m );
#This Code is Contributed by ajit
?>


Javascript

<script>
// Javascript implementation of above approach
// Function to count such triplets
function countTriplets(arr, n, m)
{
let count = 0;
// Sort the array
arr.sort( function (a, b){ return a - b});
let end, start, mid;
// three pointer technique
for (end = n - 1; end >= 2; end--)
{
start = 0; mid = end - 1;
while (start < mid)
{
// Calculate the product
// of a triplet
let prod = arr[end] * arr[start] * arr[mid];
// Check if that product
// is greater than m,
// decrement mid
if (prod > m)
mid--;
// Check if that product
// is smaller than m,
// increment start
else if (prod < m)
start++;
// Check if that product
// is equal to m,
// decrement mid, increment
// start and increment the
// count of pairs
else if (prod == m)
{
count++;
mid--;
start++;
}
}
}
return count;
}
let arr = [ 1, 1, 1, 1, 1, 1 ];
let n = arr.length;
let m = 1;
document.write(countTriplets(arr, n, m));
</script>


输出:

6

时间复杂性: O(N^2) 空间复杂性: O(1)

© 版权声明
THE END
喜欢就支持一下吧
点赞14 分享