通过从第一和第二阵列中选取X和Y元素,最大化X+Y元素的总和

给定两个大小为N的数组,以及两个数字X和Y,任务是通过考虑以下几点来最大化总和:

null
  • 选择 十、 来自第一个数组和 Y 第二个数组中的值,使X+Y值之和最大。
  • 给出了X+Y等于N。

例如:

输入: arr1[]={1,4,1},arr2[]={2,5,3},N=3,X=2,Y=1 输出: 8. 为了使两个数组的和最大化, 从第一个数组中选择第一和第二个元素,从第二个数组中选择第三个元素。

输入: A[]={1,4,1,2},B[]={4,3,2,5},N=4,X=2,Y=2 输出: 14

方法: 贪婪的方法可以用来解决上述问题。以下是所需的步骤:

  • 通过查找两个数组元素之间的最大差异,首先查找具有最大值的数组元素。
  • 为此,请找到第一个数组和第二个数组的值之间的绝对差,然后将其存储在另一个数组中。
  • 按降序排列此数组。
  • 排序时,跟踪数组中元素的原始位置。
  • 现在比较两个数组的元素,并将较大的值添加到maxAmount。
  • 如果两者的值相同,则在X不为零时添加第一个数组的元素,否则添加第二个数组的元素。
  • 遍历数组后,完全返回maxAmount计算值。

以下是上述方法的实施情况:

C++

// C++ program to print the maximum
// possible sum from two arrays.
#include <bits/stdc++.h>
using namespace std;
// class that store values of two arrays
// and also store their absolute difference
class triplet {
public :
int first;
int second;
int diff;
triplet( int f, int s, int d)
: first(f), second(s), diff(d)
{
}
};
// Compare function used to sort array in decreasing order
bool compare(triplet& a, triplet& b)
{
return a.diff > b.diff; // decreasing order
}
/// Function to find the maximum possible
/// sum that can be generated from 2 arrays
int findMaxAmount( int arr1[], int arr2[], int n, int x, int y)
{
// vector where each index stores 3 things:
// Value of 1st array
// Value of 2nd array
// Their absolute difference
vector<triplet> v;
for ( int i = 0; i < n; i++) {
triplet t(arr1[i], arr2[i], abs (arr1[i] - arr2[i]));
v.push_back(t);
}
// sort according to their absolute difference
sort(v.begin(), v.end(), compare);
// it will store maximum sum
int maxAmount = 0;
int i = 0;
// Run loop for N times or
// value of X or Y becomes zero
while (i < n && x > 0 && y > 0) {
// if 1st array element has greater
// value, add it to maxAmount
if (v[i].first > v[i].second) {
maxAmount += v[i].first;
x--;
}
// if 2nd array element has greater
// value, add it to maxAmount
if (v[i].first < v[i].second) {
maxAmount += v[i].second;
y--;
}
// if both have same value, add element
// of first array if X is not zero
// else add element of second array
if (v[i].first == v[i].second) {
if (x > 0) {
maxAmount += v[i].first;
x--;
}
else if (y > 0) {
maxAmount += v[i].second;
y--;
}
}
// increment after picking element
i++;
}
// add the remaining values
// of first array to maxAmount
while (i < v.size() && x--) {
maxAmount += v[i++].first;
}
// add the remaining values of
// second array to maxAmount
while (i < v.size() && y--) {
maxAmount += v[i++].second;
}
return maxAmount;
}
// Driver Code
int main()
{
int A[] = { 1, 4, 1, 2 };
int B[] = { 4, 3, 2, 5 };
int n = sizeof (A) / sizeof (A[0]);
int X = 2, Y = 2;
cout << findMaxAmount(A, B, n, X, Y) << "" ;
}


JAVA

// Java program to print the maximum
// possible sum from two arrays.
import java.util.*;
// class that store values of two arrays
// and also store their absolute difference
class Triplet implements Comparable<Triplet>
{
int first;
int second;
int diff;
Triplet( int f, int s, int d)
{
first = f;
second = s;
diff = d;
}
// CompareTo function used to sort
// array in decreasing order
public int compareTo(Triplet o)
{
return o.diff - this .diff;
}
}
class GFG{
// Function to find the maximum possible
// sum that can be generated from 2 arrays
public static int findMaxAmount( int arr1[],
int arr2[],
int n, int x,
int y)
{
// Vector where each index
// stores 3 things:
// Value of 1st array
// Value of 2nd array
// Their absolute difference
Vector<Triplet> v = new Vector<>();
for ( int i = 0 ; i < n; i++)
{
v.add( new Triplet(arr1[i], arr2[i],
Math.abs(arr1[i] -
arr2[i])));
}
// Sort according to their
// absolute difference
Collections.sort(v);
// It will store maximum sum
int maxAmount = 0 ;
int i = 0 ;
// Run loop for N times or
// value of X or Y becomes zero
while (i < n && x > 0 && y > 0 )
{
// If 1st array element has greater
// value, add it to maxAmount
if (v.get(i).first > v.get(i).second)
{
maxAmount += v.get(i).first;
x--;
}
// If 2nd array element has greater
// value, add it to maxAmount
if (v.get(i).first < v.get(i).second)
{
maxAmount += v.get(i).second;
y--;
}
// If both have same value, add element
// of first array if X is not zero
// else add element of second array
if (v.get(i).first == v.get(i).second)
{
if (x > 0 )
{
maxAmount += v.get(i).first;
x--;
}
else if (y > 0 )
{
maxAmount += v.get(i).second;
y--;
}
}
// Increment after picking element
i++;
}
// Add the remaining values
// of first array to maxAmount
while (i < v.size() && x-- > 0 )
{
maxAmount += v.get(i++).first;
}
// Add the remaining values of
// second array to maxAmount
while (i < v.size() && y-- > 0 )
{
maxAmount += v.get(i++).second;
}
return maxAmount;
}
// Driver Code
public static void main(String []args)
{
int A[] = { 1 , 4 , 1 , 2 };
int B[] = { 4 , 3 , 2 , 5 };
int n = A.length;
int X = 2 , Y = 2 ;
System.out.println(findMaxAmount(A, B, n, X, Y));
}
}
// This code is contributed by jrishabh99


Python3

# Python3 program to print the maximum
# possible sum from two arrays.
# Class that store values of two arrays
# and also store their absolute difference
class triplet:
def __init__( self , f, s, d):
self .first = f
self .second = s
self .diff = d
# Function to find the maximum possible
# sum that can be generated from 2 arrays
def findMaxAmount(arr1, arr2, n, x, y):
# vector where each index stores 3 things:
# Value of 1st array
# Value of 2nd array
# Their absolute difference
v = []
for i in range ( 0 , n):
t = triplet(arr1[i], arr2[i],
abs (arr1[i] - arr2[i]))
v.append(t)
# sort according to their absolute difference
v.sort(key = lambda x: x.diff, reverse = True )
# it will store maximum sum
maxAmount, i = 0 , 0
# Run loop for N times or
# value of X or Y becomes zero
while i < n and x > 0 and y > 0 :
# if 1st array element has greater
# value, add it to maxAmount
if v[i].first > v[i].second:
maxAmount + = v[i].first
x - = 1
# if 2nd array element has greater
# value, add it to maxAmount
if v[i].first < v[i].second:
maxAmount + = v[i].second
y - = 1
# if both have same value, add element
# of first array if X is not zero
# else add element of second array
if v[i].first = = v[i].second:
if x > 0 :
maxAmount + = v[i].first
x - = 1
elif y > 0 :
maxAmount + = v[i].second
y - = 1
# increment after picking element
i + = 1
# add the remaining values
# of first array to maxAmount
while i < len (v) and x > 0 :
maxAmount + = v[i].first
i, x = i + 1 , x - 1
# add the remaining values of
# second array to maxAmount
while i < len (v) and y > 0 :
maxAmount + = v[i].second
i, y = i + 1 , y - 1
return maxAmount
# Driver Code
if __name__ = = "__main__" :
A = [ 1 , 4 , 1 , 2 ]
B = [ 4 , 3 , 2 , 5 ]
n = len (A)
X, Y = 2 , 2
print (findMaxAmount(A, B, n, X, Y))
# This code is contributed by Rituraj Jain


输出:

14

时间复杂性: O(N日志N) 辅助空间: O(N)

© 版权声明
THE END
喜欢就支持一下吧
点赞13 分享