如果共线点不超过两个,则平面中三角形的数量

给定平面上的n个点,且共线点不超过两个,任务是计算给定平面上的三角形数。 例如:

null
Input :  n = 3Output : 1Input :  n = 4Output : 4

Number of Triangles

假设一个平面上有n个点,且没有三个或更多点共线,那么给定平面上的三角形数由 ^{n}	extrm{C}_{3} = frac{n(n-1)(n-2)}{6}

C++

// C++ program to find the number of
// triangles in a plane if no more
// then two points are collinear.
#include <bits/stdc++.h>
using namespace std;
// Function to find number of triangles
// in a plane.
int countNumberOfTriangles( int n)
{
// Formula to find number of triangles
// nC3 = n * (n - 1) * (n - 2) / 6
return n * (n - 1) * (n - 2) / 6;
}
// Driver code
int main()
{
int n = 4;
cout << countNumberOfTriangles(n);
return 0;
}


JAVA

// Java program to find the number of
// triangles in a plane if no more
// then two points are collinear.
import java.io.*;
class GFG {
// Function to find number of triangles
// in a plane.
static int countNumberOfTriangles( int n)
{
// Formula to find number of triangle
// nC3 = n * (n - 1) * (n - 2) / 6
return n * (n - 1 ) * (n - 2 ) / 6 ;
}
// Driver code
public static void main(String[] args)
{
int n = 4 ;
System.out.println(
countNumberOfTriangles(n));
}
}


Python3

# Python3 program to find
# the number of triangles
# in a plane if no more
# then two points are collinear.
# Function to find number
# of triangles in a plane.
def countNumberOfTriangles(n) :
# Formula to find
# number of triangles
# nC3 = n * (n - 1) *
# (n - 2) / 6
return (n * (n - 1 ) *
(n - 2 ) / / 6 )
# Driver Code
if __name__ = = '__main__' :
n = 4
print (countNumberOfTriangles(n))
# This code is contributed
# by ajit


C#

// C# program to find the
// number of triangles in
// a plane if no more then
// two points are collinear.
using System;
class GFG
{
// Function to find number
// of triangles in a plane.
static int countNumberOfTriangles( int n)
{
// Formula to find number
// of triangle
// nC3 = n * (n - 1) *
//           (n - 2) / 6
return n * (n - 1) *
(n - 2) / 6;
}
// Driver code
public static void Main()
{
int n = 4;
Console.WriteLine(
countNumberOfTriangles(n));
}
}
// This code is contributed by anuj_67.


PHP

<?php
// PHP program to find the
// number of triangles in a
// plane if no more then
// two points are collinear.
// Function to find number
// of triangles in a plane.
function countNumberOfTriangles( $n )
{
// Formula to find number
// of triangles nC3 = n *
// (n - 1) * (n - 2) / 6
return $n * ( $n - 1) *
( $n - 2) / 6;
}
// Driver code
$n = 4;
echo countNumberOfTriangles( $n );
// This code is contributed
// by anuj_67.
?>


Javascript

<script>
// javascript program to find the number of
// triangles in a plane if no more
// then two points are collinear.
// Function to find number of triangles
// in a plane.
function countNumberOfTriangles(n)
{
// Formula to find number of triangle
// nC3 = n * (n - 1) * (n - 2) / 6
return n * (n - 1) * (n - 2) / 6;
}
// Driver code
var n = 4;
document.write(countNumberOfTriangles(n));
// This code is contributed by aashish1995
</script>


输出:

4

© 版权声明
THE END
喜欢就支持一下吧
点赞15 分享