给定平面上的n个点,且共线点不超过两个,任务是计算给定平面上的三角形数。 例如:
null
Input : n = 3Output : 1Input : n = 4Output : 4
假设一个平面上有n个点,且没有三个或更多点共线,那么给定平面上的三角形数由
C++
// C++ program to find the number of // triangles in a plane if no more // then two points are collinear. #include <bits/stdc++.h> using namespace std; // Function to find number of triangles // in a plane. int countNumberOfTriangles( int n) { // Formula to find number of triangles // nC3 = n * (n - 1) * (n - 2) / 6 return n * (n - 1) * (n - 2) / 6; } // Driver code int main() { int n = 4; cout << countNumberOfTriangles(n); return 0; } |
JAVA
// Java program to find the number of // triangles in a plane if no more // then two points are collinear. import java.io.*; class GFG { // Function to find number of triangles // in a plane. static int countNumberOfTriangles( int n) { // Formula to find number of triangle // nC3 = n * (n - 1) * (n - 2) / 6 return n * (n - 1 ) * (n - 2 ) / 6 ; } // Driver code public static void main(String[] args) { int n = 4 ; System.out.println( countNumberOfTriangles(n)); } } |
Python3
# Python3 program to find # the number of triangles # in a plane if no more # then two points are collinear. # Function to find number # of triangles in a plane. def countNumberOfTriangles(n) : # Formula to find # number of triangles # nC3 = n * (n - 1) * # (n - 2) / 6 return (n * (n - 1 ) * (n - 2 ) / / 6 ) # Driver Code if __name__ = = '__main__' : n = 4 print (countNumberOfTriangles(n)) # This code is contributed # by ajit |
C#
// C# program to find the // number of triangles in // a plane if no more then // two points are collinear. using System; class GFG { // Function to find number // of triangles in a plane. static int countNumberOfTriangles( int n) { // Formula to find number // of triangle // nC3 = n * (n - 1) * // (n - 2) / 6 return n * (n - 1) * (n - 2) / 6; } // Driver code public static void Main() { int n = 4; Console.WriteLine( countNumberOfTriangles(n)); } } // This code is contributed by anuj_67. |
PHP
<?php // PHP program to find the // number of triangles in a // plane if no more then // two points are collinear. // Function to find number // of triangles in a plane. function countNumberOfTriangles( $n ) { // Formula to find number // of triangles nC3 = n * // (n - 1) * (n - 2) / 6 return $n * ( $n - 1) * ( $n - 2) / 6; } // Driver code $n = 4; echo countNumberOfTriangles( $n ); // This code is contributed // by anuj_67. ?> |
Javascript
<script> // javascript program to find the number of // triangles in a plane if no more // then two points are collinear. // Function to find number of triangles // in a plane. function countNumberOfTriangles(n) { // Formula to find number of triangle // nC3 = n * (n - 1) * (n - 2) / 6 return n * (n - 1) * (n - 2) / 6; } // Driver code var n = 4; document.write(countNumberOfTriangles(n)); // This code is contributed by aashish1995 </script> |
输出:
4
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END