通过对数组元素执行乘法和mod运算,从开始到结束的最小步骤

给定开始、结束和N个数字的数组。在每一步中,start与数组中的任何数字相乘,然后对100000进行mod操作以获得新的start。我们的任务是找到从一开始就可以达到目的的最小步骤。 例如:

null

输入: 开始=3结束=30A[]={2,5,7} 输出: 2. 第一步:3*2=6%100000=6 第二步:6*5=30%100000=30 输入: 开始=7结束=66175 a[]={3,4,65} 输出: 4. 第一步:7*3=21%100000=21 第二步:21*3=6%100000=63 第三步:63*65=4095%100000=4095 第四步:4095*65=266175%100000=66175

方法: 由于在上述问题中,给出的模数为100000,因此最大状态数为10 5. .所有状态都可以使用简单的 BFS .使用-1初始化ans[]数组,该数组标记尚未访问该状态。ans[i]存储从一开始达到i所采取的步骤数。首先将开始推送到队列,然后应用BFS。弹出顶部元素并检查它是否等于结束,如果是,则打印ans[end]。如果元素不等于最上面的元素,则将最上面的元素与数组中的每个元素相乘,并执行mod操作。如果之前没有访问过乘法元素状态,则将其推入队列。通过ans[top_element]+1初始化ans[push_element]。一旦访问了所有状态,并且无法通过执行所有可能的乘法来达到该状态,则打印-1。 以下是上述方法的实施情况:

C++

// C++ program to find the minimum steps
// to reach end from start by performing
// multiplications and mod operations with array elements
#include <bits/stdc++.h>
using namespace std;
// Function that returns the minimum operations
int minimumMulitplications( int start, int end, int a[], int n)
{
// array which stores the minimum steps
// to reach i from start
int ans[100001];
// -1 indicated the state has not been visited
memset (ans, -1, sizeof (ans));
int mod = 100000;
// queue to store all possible states
queue< int > q;
// initially push the start
q.push(start % mod);
// to reach start we require 0 steps
ans[start] = 0;
// till all states are visited
while (!q.empty()) {
// get the topmost element in the queue
int top = q.front();
// pop the topmost element
q.pop();
// if the topmost element is end
if (top == end)
return ans[end];
// perform multiplication with all array elements
for ( int i = 0; i < n; i++) {
int pushed = top * a[i];
pushed = pushed % mod;
// if not visited, then push it to queue
if (ans[pushed] == -1) {
ans[pushed] = ans[top] + 1;
q.push(pushed);
}
}
}
return -1;
}
// Driver Code
int main()
{
int start = 7, end = 66175;
int a[] = { 3, 4, 65 };
int n = sizeof (a) / sizeof (a[0]);
// Calling function
cout << minimumMulitplications(start, end, a, n);
return 0;
}


JAVA

// Java program to find the minimum steps
// to reach end from start by performing
// multiplications and mod operations with array elements
import java.util.Arrays;
import java.util.LinkedList;
import java.util.Queue;
class GFG {
// Function that returns the minimum operations
static int minimumMulitplications( int start, int end, int a[], int n) {
// array which stores the minimum steps
// to reach i from start
int ans[] = new int [ 100001 ];
// -1 indicated the state has not been visited
Arrays.fill(ans, - 1 );
int mod = 100000 ;
// queue to store all possible states
Queue<Integer> q = new LinkedList<>();
// initially push the start
q.add(start % mod);
// to reach start we require 0 steps
ans[start] = 0 ;
// till all states are visited
while (!q.isEmpty()) {
// get the topmost element in the queue
int top = q.peek();
// pop the topmost element
q.remove();
// if the topmost element is end
if (top == end) {
return ans[end];
}
// perform multiplication with all array elements
for ( int i = 0 ; i < n; i++) {
int pushed = top * a[i];
pushed = pushed % mod;
// if not visited, then push it to queue
if (ans[pushed] == - 1 ) {
ans[pushed] = ans[top] + 1 ;
q.add(pushed);
}
}
}
return - 1 ;
}
// Driver Code
public static void main(String args[]) {
int start = 7 , end = 66175 ;
int a[] = { 3 , 4 , 65 };
int n = a.length;
// Calling function
System.out.println(minimumMulitplications(start, end, a, n));
}
}
// This code is contributed by PrinciRaj19992


Python3

# Python3 program to find the minimum steps
# to reach end from start by performing
# multiplications and mod operations with
# array elements
from collections import deque
# Function that returns the minimum operations
def minimumMulitplications(start, end, a, n):
# array which stores the minimum
# steps to reach i from start
ans = [ - 1 for i in range ( 100001 )]
# -1 indicated the state has
# not been visited
mod = 100000
q = deque()
# queue to store all possible states
# initially push the start
q.append(start % mod)
# to reach start we require 0 steps
ans[start] = 0
# till all states are visited
while ( len (q) > 0 ):
# get the topmost element in the
# queue, pop the topmost element
top = q.popleft()
# if the topmost element is end
if (top = = end):
return ans[end]
# perform multiplication with
# all array elements
for i in range (n):
pushed = top * a[i]
pushed = pushed % mod
# if not visited, then push it to queue
if (ans[pushed] = = - 1 ):
ans[pushed] = ans[top] + 1
q.append(pushed)
return - 1
# Driver Code
start = 7
end = 66175
a = [ 3 , 4 , 65 ]
n = len (a)
# Calling function
print (minimumMulitplications(start, end, a, n))
# This code is contributed by mohit kumar


C#

// C# program to find the minimum steps
// to reach end from start by performing
// multiplications and mod operations with array elements
using System;
using System.Collections.Generic;
class GFG
{
// Function that returns the minimum operations
static int minimumMulitplications( int start, int end,
int []a, int n)
{
// array which stores the minimum steps
// to reach i from start
int []ans = new int [100001];
// -1 indicated the state has not been visited
for ( int i = 0; i < ans.Length; i++)
ans[i] = -1;
int mod = 100000;
// queue to store all possible states
Queue< int > q = new Queue< int >();
// initially push the start
q.Enqueue(start % mod);
// to reach start we require 0 steps
ans[start] = 0;
// till all states are visited
while (q.Count != 0)
{
// get the topmost element in the queue
int top = q.Peek();
// pop the topmost element
q.Dequeue();
// if the topmost element is end
if (top == end)
{
return ans[end];
}
// perform multiplication with all array elements
for ( int i = 0; i < n; i++)
{
int pushed = top * a[i];
pushed = pushed % mod;
// if not visited, then push it to queue
if (ans[pushed] == -1)
{
ans[pushed] = ans[top] + 1;
q.Enqueue(pushed);
}
}
}
return -1;
}
// Driver Code
public static void Main(String []args)
{
int start = 7, end = 66175;
int []a = {3, 4, 65};
int n = a.Length;
// Calling function
Console.WriteLine(minimumMulitplications(start, end, a, n));
}
}
/* This code contributed by PrinciRaj1992 */


Javascript

<script>
// Javascript program to find the minimum steps
// to reach end from start by performing
// multiplications and mod operations with array elements
// Function that returns the minimum operations
function minimumMulitplications(start,end,a,n)
{
// array which stores the minimum steps
// to reach i from start
let ans = new Array(100001);
// -1 indicated the state has not been visited
for (let i=0;i<ans.length;i++)
{
ans[i]=-1;
}
let mod = 100000;
// queue to store all possible states
let q = [];
// initially push the start
q.push(start % mod);
// to reach start we require 0 steps
ans[start] = 0;
// till all states are visited
while (q.length!=0) {
// get the topmost element in the queue
let top = q[0];
// pop the topmost element
q.shift();
// if the topmost element is end
if (top == end) {
return ans[end];
}
// perform multiplication with all array elements
for (let i = 0; i < n; i++) {
let pushed = top * a[i];
pushed = pushed % mod;
// if not visited, then push it to queue
if (ans[pushed] == -1) {
ans[pushed] = ans[top] + 1;
q.push(pushed);
}
}
}
return -1;
}
// Driver Code
let start = 7, end = 66175;
let a=[3, 4, 65];
let n = a.length;
// Calling function
document.write(minimumMulitplications(start, end, a, n));
// This code is contributed by unknown2108
</script>


输出:

4

时间复杂性: O(n)

辅助空间: O(n)

© 版权声明
THE END
喜欢就支持一下吧
点赞14 分享