转换二叉树,使每个节点在其右子树中存储所有节点的总和

给定一棵二叉树,将每个节点中的值更改为右子树(包括其自身子树)中节点中所有值的总和。 例如:

null
Input :      1   /    2      3Output :     4  /    2     3Input :        1      /      2   3    /       4   5   6Output :       10      /      7   9    /       4   5   6

方法 :这个想法是遍历给定的二叉树 自下而上 方式递归计算左右子树中的节点之和。将右子树中的节点之和累加到当前节点,并返回当前子树下的节点之和。 下面是上述方法的实现。

C++

// C++ program to store sum of nodes in
// right subtree in every node
#include <bits/stdc++.h>
using namespace std;
// Node of tree
struct Node {
int data;
Node *left, *right;
};
// Function to create a new node
struct Node* createNode( int item)
{
Node* temp = new Node;
temp->data = item;
temp->left = NULL;
temp->right = NULL;
return temp;
}
// Function to build new tree with
// all nodes having the sum of all
// nodes in its right subtree
int updateBTree(Node* root)
{
// Base cases
if (!root)
return 0;
if (root->left == NULL && root->right == NULL)
return root->data;
// Update right and left subtrees
int rightsum = updateBTree(root->right);
int leftsum = updateBTree(root->left);
// Add rightsum to current node
root->data += rightsum;
// Return sum of values under root
return root->data + leftsum;
}
// Function to traverse tree in inorder way
void inorder( struct Node* node)
{
if (node == NULL)
return ;
inorder(node->left);
cout << node->data << " " ;
inorder(node->right);
}
// Driver code
int main()
{
/* Let us construct a binary tree
1
/
2   3
/
4   5   6       */
struct Node* root = NULL;
root = createNode(1);
root->left = createNode(2);
root->right = createNode(3);
root->left->left = createNode(4);
root->left->right = createNode(5);
root->right->right = createNode(6);
// new tree construction
updateBTree(root);
cout << "Inorder traversal of the modified tree is " ;
inorder(root);
return 0;
}


JAVA

// Java program to store sum of nodes in
// right subtree in every node
class GFG
{
// Node of tree
static class Node
{
int data;
Node left, right;
};
// Function to create a new node
static Node createNode( int item)
{
Node temp = new Node();
temp.data = item;
temp.left = null ;
temp.right = null ;
return temp;
}
// Function to build new tree with
// all nodes having the sum of all
// nodes in its right subtree
static int updateBTree(Node root)
{
// Base cases
if (root == null )
return 0 ;
if (root.left == null && root.right == null )
return root.data;
// Update right and left subtrees
int rightsum = updateBTree(root.right);
int leftsum = updateBTree(root.left);
// Add rightsum to current node
root.data += rightsum;
// Return sum of values under root
return root.data + leftsum;
}
// Function to traverse tree in inorder way
static void inorder( Node node)
{
if (node == null )
return ;
inorder(node.left);
System.out.print( node.data + " " );
inorder(node.right);
}
// Driver code
public static void main(String args[])
{
/* Let us construct a binary tree
1
/
2 3
/
4 5 6 */
Node root = null ;
root = createNode( 1 );
root.left = createNode( 2 );
root.right = createNode( 3 );
root.left.left = createNode( 4 );
root.left.right = createNode( 5 );
root.right.right = createNode( 6 );
// new tree conion
updateBTree(root);
System.out.print( "Inorder traversal of the modified tree is " );
inorder(root);
}
}
// This code is contributed by Arnab Kundu


Python3

# Program to convert expression tree
# from prefix expression
# Helper function that allocates a new
# node with the given data and None
# left and right poers.
class createNode:
# Conto create a new node
def __init__( self , key):
self .data = key
self .left = None
self .right = None
# Function to build new tree with
# all nodes having the sum of all
# nodes in its right subtree
def updateBTree( root):
# Base cases
if ( not root):
return 0
if (root.left = = None and
root.right = = None ):
return root.data
# Update right and left subtrees
rightsum = updateBTree(root.right)
leftsum = updateBTree(root.left)
# Add rightsum to current node
root.data + = rightsum
# Return sum of values under root
return root.data + leftsum
# Function to traverse tree in inorder way
def inorder(node):
if (node = = None ):
return
inorder(node.left)
print (node.data, end = " " )
inorder(node.right)
# Driver Code
if __name__ = = '__main__' :
""" Let us convert binary tree
1
/
2 3
/
4 5 6 """
root = None
root = createNode( 1 )
root.left = createNode( 2 )
root.right = createNode( 3 )
root.left.left = createNode( 4 )
root.left.right = createNode( 5 )
root.right.right = createNode( 6 )
# new tree construction
updateBTree(root)
print ( "Inorder traversal of the" ,
"modified tree is" )
inorder(root)
# This code is contributed by
# Shubham Singh(SHUBHAMSINGH10)


C#

// C# program to store sum of nodes in
// right subtree in every node
using System;
class GFG
{
// Node of tree
public class Node
{
public int data;
public Node left, right;
};
// Function to create a new node
static Node createNode( int item)
{
Node temp = new Node();
temp.data = item;
temp.left = null ;
temp.right = null ;
return temp;
}
// Function to build new tree with
// all nodes having the sum of all
// nodes in its right subtree
static int updateBTree(Node root)
{
// Base cases
if (root == null )
return 0;
if (root.left == null && root.right == null )
return root.data;
// Update right and left subtrees
int rightsum = updateBTree(root.right);
int leftsum = updateBTree(root.left);
// Add rightsum to current node
root.data += rightsum;
// Return sum of values under root
return root.data + leftsum;
}
// Function to traverse tree in inorder way
static void inorder( Node node)
{
if (node == null )
return ;
inorder(node.left);
Console.Write( node.data + " " );
inorder(node.right);
}
// Driver code
public static void Main(String[] args)
{
/* Let us construct a binary tree
1
/
2 3
/
4 5 6 */
Node root = null ;
root = createNode(1);
root.left = createNode(2);
root.right = createNode(3);
root.left.left = createNode(4);
root.left.right = createNode(5);
root.right.right = createNode(6);
// new tree conion
updateBTree(root);
Console.Write( "Inorder traversal of the modified tree is " );
inorder(root);
}
}
// This code contributed by Rajput-Ji


Javascript

<script>
// Javascript program to store sum of nodes in
// right subtree in every node
// Node of tree
class Node
{
constructor()
{
this .data = 0;
this .left = null ;
this .right = null ;
}
};
// Function to create a new node
function createNode(item)
{
var temp = new Node();
temp.data = item;
temp.left = null ;
temp.right = null ;
return temp;
}
// Function to build new tree with
// all nodes having the sum of all
// nodes in its right subtree
function updateBTree(root)
{
// Base cases
if (root == null )
return 0;
if (root.left == null && root.right == null )
return root.data;
// Update right and left subtrees
var rightsum = updateBTree(root.right);
var leftsum = updateBTree(root.left);
// Add rightsum to current node
root.data += rightsum;
// Return sum of values under root
return root.data + leftsum;
}
// Function to traverse tree in inorder way
function inorder(node)
{
if (node == null )
return ;
inorder(node.left);
document.write( node.data + " " );
inorder(node.right);
}
// Driver code
/* Let us construct a binary tree
1
/
2 3
/
4 5 6 */
var root = null ;
root = createNode(1);
root.left = createNode(2);
root.right = createNode(3);
root.left.left = createNode(4);
root.left.right = createNode(5);
root.right.right = createNode(6);
// new tree conion
updateBTree(root);
document.write( "Inorder traversal of the modified tree is <br>" );
inorder(root);
// This code is contributed by famously.
</script>


输出:

Inorder traversal of the modified tree is 4 7 5 10 9 6

时间复杂性 :O(n)

© 版权声明
THE END
喜欢就支持一下吧
点赞13 分享