中心十二面体数

给定一个数字n,找到 第n位 居中十二面体数。 A. 中心十二面体数 是一类比喻数字。它由一个中心点构成,周围是连续的十二面体(12个平面的多面体)层。 前几个中心十二面体数 (其中n=0,1,2,3……) 是: 1, 33, 155, 427, 909, 1661 …………… 例如:

null
Input : 5Output : 1661Input :1Output :33

数学公式 N 居中十二面体数由下式给出:

Cd_{n}=(2n+1)(5n^2+5n+1)

以下是上述理念的基本实现:

C++

// Program to find nth centered
// dodecahedral number
#include <bits/stdc++.h>
using namespace std;
// Function to find
// centered dodecahedral number
int CenteredDodecahedral_num( long int n)
{
// Formula to calculate nth
// centered dodecahedral number
// and return it into main function.
return (2 * n + 1) * (5 * n * n + 5 * n + 1);
}
// Driver Code
int main()
{
long int n = 3;
// print result
cout << n << "th Centered Dodecahedral number : " ;
cout << CenteredDodecahedral_num(n) << endl;
n = 10;
// print result
cout << n << "th Centered Dodecahedral number : " ;
cout << CenteredDodecahedral_num(n);
return 0;
}


JAVA

// Java Program to find nth
// centered dodecahedral number
import java.io.*;
class GFG {
// Function to find centered
// dodecahedral number
static int CenteredDodecahedral_num( int n)
{
// Formula to calculate nth
// centered dodecahedral number
// and return it into main function.
return ( 2 * n + 1 ) *
( 5 * n * n + 5 * n + 1 );
}
// Driver Code
public static void main (String[] args)
{
int n = 3 ;
// print result
System.out.print( n + "th Centered "
+ "Dodecahedral number : " );
System.out.println (
CenteredDodecahedral_num(n));
n = 10 ;
// print result
System.out.print( n + "th Centered "
+ "Dodecahedral number : " );
System.out.println(
CenteredDodecahedral_num(n));
}
}
// This code is contributed by m_kit.


Python3

# Program to find nth centered
# dodecahedral number
# Function to find centered
# dodecahedral number
def CenteredDodecahedral_num(n) :
# Formula to calculate nth
# centered dodecahedral number
return ( 2 * n + 1 ) * ( 5 * n * n + 5 * n + 1 )
# Driver Code
if __name__ = = '__main__' :
n = 3
print (n, "rd centered dodecahedral number: " ,
CenteredDodecahedral_num(n))
n = 10
print (n, "th centered dodecahedral number : " ,
CenteredDodecahedral_num(n))
# This code is contributed by aj_36


C#

// C# Program to find
// nth centered
// dodecahedral number
using System;
class GFG
{
// Function to find
// nth centered
// dodecahedral number
static int CenteredDodecahedral_num( int n)
{
// Formula to calculate
// nth centered dodecahedral
// number and return it
// into main function.
return (2 * n + 1) *
(5 * n * n +
5 * n + 1);
}
// Driver Code
static public void Main ()
{
int n = 3;
// print result
Console.Write( n + "th Centered " +
"Dodecahedral number : " );
Console.WriteLine(
CenteredDodecahedral_num(n));
n = 10;
// print result
Console.Write( n + "th Centered " +
"Dodecahedral number : " );
Console.WriteLine(
CenteredDodecahedral_num(n));
}
}
// This code is contributed by ajit


PHP

<?php
// Program to find nth centered
// dodecahedral number
// Function to find
// centered dodecahedral number
function CenteredDodecahedral_num( $n )
{
// Formula to calculate nth
// centered dodecahedral number
// and return it into main function.
return (2 * $n + 1) *
(5 * $n * $n +
5 * $n + 1);
}
// Driver Code
$n = 3;
// print result
echo $n , "th Centered Dodecahedral " .
"number : " ;
echo CenteredDodecahedral_num( $n ), "" ;
$n = 10;
// print result
echo $n , "th Centered Dodecahedral " .
"number : " ;
echo CenteredDodecahedral_num( $n );
// This code is contributed by akt_mit
?>


Javascript

<script>
// Javascript Program to find nth
// centered dodecahedral number
// Function to find centered
// dodecahedral number
function CenteredDodecahedral_num(n)
{
// Formula to calculate nth
// centered dodecahedral number
// and return it into main function.
return (2 * n + 1) *
(5 * n * n + 5 * n + 1);
}
// Driver code
var n = 3;
// print result
document.write(n + "th Centered " +
"Dodecahedral number : " );
document.write(CenteredDodecahedral_num(n) + "<br>" );
n = 10;
// print result
document.write(n + "th Centered " +
"Dodecahedral number : " );
document.write(CenteredDodecahedral_num(n));
// This code is contributed by Khushboogoyal499
</script>


输出:

3th Centered Dodecahedral number : 42710th Centered Dodecahedral number : 11571

时间复杂性: O(1) 辅助空间: O(1)

参考资料: https://en.wikipedia.org/wiki/Centered_dodecahedral_number

© 版权声明
THE END
喜欢就支持一下吧
点赞6 分享