系列1、17、98、354的第n项……

给出一个系列1,17,98,354……找出这个系列的第n项。 级数基本上代表前n个自然数的四次方之和。第一项是1的和 4. .第二项是两个数字的总和,即(1 4. + 2 4. =17),第三项,即(1) 4. + 2 4. + 3 4. )等等。

null

例如:

Input : 5Output : 979Input : 7Output : 4676 

天真的方法: 一个简单的解决方案是将前n个自然数的四次方相加。通过迭代,我们可以很容易地找到级数的第n项。 以下是上述方法的实施情况:

C++

// CPP program to find n-th term of
// series
#include <iostream>
using namespace std;
// Function to find the nth term of series
int sumOfSeries( int n)
{
// Loop to add 4th powers
int ans = 0;
for ( int i = 1; i <= n; i++)
ans += i * i * i * i;
return ans;
}
// Driver code
int main()
{
int n = 4;
cout << sumOfSeries(n);
return 0;
}


JAVA

// Java program to find n-th term of
// series
import java.io.*;
class GFG {
// Function to find the nth term of series
static int sumOfSeries( int n)
{
// Loop to add 4th powers
int ans = 0 ;
for ( int i = 1 ; i <= n; i++)
ans += i * i * i * i;
return ans;
}
// Driver code
public static void main(String args[])
{
int n = 4 ;
System.out.println(sumOfSeries(n));
}
}


Python3

# Python 3 program to find
# n-th term of
# series
# Function to find the
# nth term of series
def sumOfSeries(n) :
# Loop to add 4th powers
ans = 0
for i in range ( 1 , n + 1 ) :
ans = ans + i * i * i * i
return ans
# Driver code
n = 4
print (sumOfSeries(n))


C#

// C# program to find n-th term of
// series
using System;
class GFG {
// Function to find the
// nth term of series
static int sumOfSeries( int n)
{
// Loop to add 4th powers
int ans = 0;
for ( int i = 1; i <= n; i++)
ans += i * i * i * i;
return ans;
}
// Driver code
public static void Main()
{
int n = 4;
Console.WriteLine(sumOfSeries(n));
}
}
// This code is contributed by anuj_67


PHP

<?php
// PHP program to find
// n-th term of series
// Function to find the
// nth term of series
function sumOfSeries( $n )
{
// Loop to add 4th powers
$ans = 0;
for ( $i = 1; $i <= $n ; $i ++)
$ans += $i * $i * $i * $i ;
return $ans ;
}
// Driver code
$n = 4;
echo sumOfSeries( $n );
// This code is contributed
// by anuj_67
?>


Javascript

<script>
// Javascript program to find n-th term of
// series
// Function to find the nth term of series
function sumOfSeries( n)
{
// Loop to add 4th powers
let ans = 0;
for (let i = 1; i <= n; i++)
ans += i * i * i * i;
return ans;
}
// Driver Code
let n = 4;
document.write(sumOfSeries(n));
</script>


输出:

354

时间复杂性: O(n)。

有效方法: 本系列中的模式是n项等于 第(n-1)项与第n项之和 4. .

例如:

n = 22nd term equals to sum of 1st term and 24 i.e 16A2 = A1 + 16    = 1 + 16   = 17Similarly,A3 = A2 + 34   = 17 + 81   = 98 and so on..

我们得到:

A(n) = A(n - 1) + n4      = A(n - 2) + n4  + (n-1)4      = A(n - 3) + n4  + (n-1)4 + (n-2)4       .       .       .     = A(1) + 16 + 81... + (n-1)4 + n4A(n) = 1 + 16 + 81 +... + (n-1)4 + n4     = n(n + 1)(6n3 + 9n2 + n - 1) / 30 i.e A(n) is sum of 4th powers of First n natural numbers.

以下是上述方法的实施情况:

C++

// CPP program to find the n-th
// term in series
#include <bits/stdc++.h>
using namespace std;
// Function to find nth term
int sumOfSeries( int n)
{
return n * (n + 1) * (6 * n * n * n
+ 9 * n * n + n - 1) / 30;
}
// Driver code
int main()
{
int n = 4;
cout << sumOfSeries(n);
return 0;
}


JAVA

// Java program to find the n-th
// term in series
import java.io.*;
class Series {
// Function to find nth term
static int sumOfSeries( int n)
{
return n * (n + 1 ) * ( 6 * n * n * n
+ 9 * n * n + n - 1 ) / 30 ;
}
// Driver Code
public static void main(String[] args)
{
int n = 4 ;
System.out.println(sumOfSeries(n));
}
}


python

# Python program to find the Nth
# term in series
# Function to print nth term
# of series
def sumOfSeries(n):
return n * (n + 1 ) * ( 6 * n * n * n
+ 9 * n * n + n - 1 ) / 30
# Driver code
n = 4
print sumOfSeries(n)


C#

// C# program to find the n-th
// term in series
using System;
class Series {
// Function to find nth term
static int sumOfSeries( int n)
{
return n * (n + 1) * (6 * n * n * n
+ 9 * n * n + n - 1) / 30;
}
// Driver Code
public static void Main()
{
int n = 4;
Console.WriteLine(sumOfSeries(n));
}
}
// This code is contributed by anuj_67


PHP

<?php
// PHP program to find the n-th
// term in series
// Function to find nth term
function sumOfSeries( $n )
{
return $n * ( $n + 1) * (6 * $n * $n *
$n + 9 * $n * $n + $n - 1) / 30;
}
// Driver code
$n = 4;
echo sumOfSeries( $n );
// This code is contributed by anuj_67
?>


Javascript

<script>
// Javascript program to find the n-th term in series
// Function to find nth term
function sumOfSeries(n)
{
return n * (n + 1) * (6 * n * n * n + 9 * n * n + n - 1) / 30;
}
let n = 4;
document.write(sumOfSeries(n));
// This code is contributed by divyeshrabadiya07.
</script>


输出:

354

时间复杂性: O(1)。

© 版权声明
THE END
喜欢就支持一下吧
点赞5 分享