哈迪-拉马努扬定理

Hardy-Ramanujam定理指出,对于 大多数自然数n 例如:

null

5192有两个不同的素因子,log(log(5192))=2.1615 51242183有3个不同的基本事实,log(log(51242183))=2.8765

正如声明所引用的,这只是一个近似值。有 反例 例如

510510有7个不同的基本因子,但log(log(510510))=2.5759 1048576有1个素因子,但log(log(1048576))=2.62922

这个定理主要用于近似算法,它的证明引出了概率论中更大的概念。

C++

// CPP program to count all prime factors
#include <bits/stdc++.h>
using namespace std;
// A function to count prime factors of
// a given number n
int exactPrimeFactorCount( int n)
{
int count = 0;
if (n % 2 == 0) {
count++;
while (n % 2 == 0)
n = n / 2;
}
// n must be odd at this point. So we can skip
// one element (Note i = i +2)
for ( int i = 3; i <= sqrt (n); i = i + 2) {
if (n % i == 0) {
count++;
while (n % i == 0)
n = n / i;
}
}
// This condition is to handle the case when n
// is a prime number greater than 2
if (n > 2)
count++;
return count;
}
// driver function
int main()
{
int n = 51242183;
cout << "The number of distinct prime factors is/are "
<< exactPrimeFactorCount(n) << endl;
cout << "The value of log(log(n)) is "
<< log ( log (n)) << endl;
return 0;
}


JAVA

// Java program to count all prime factors
import java.io.*;
class GFG {
// A function to count prime factors of
// a given number n
static int exactPrimeFactorCount( int n)
{
int count = 0 ;
if (n % 2 == 0 ) {
count++;
while (n % 2 == 0 )
n = n / 2 ;
}
// n must be odd at this point. So we can skip
// one element (Note i = i +2)
for ( int i = 3 ; i <= Math.sqrt(n); i = i + 2 )
{
if (n % i == 0 ) {
count++;
while (n % i == 0 )
n = n / i;
}
}
// This condition is to handle the case
// when n is a prime number greater than 2
if (n > 2 )
count++;
return count;
}
// driver function
public static void main (String[] args)
{
int n = 51242183 ;
System.out.println( "The number of distinct "
+ "prime factors is/are "
+ exactPrimeFactorCount(n));
System.out.println( "The value of log(log(n))"
+ " is " + Math.log(Math.log(n))) ;
}
}
// This code is contributed by anuj_67.


Python3

# Python3 program to count all
# prime factors
import math
# A function to count
# prime factors of
# a given number n
def exactPrimeFactorCount(n) :
count = 0
if (n % 2 = = 0 ) :
count = count + 1
while (n % 2 = = 0 ) :
n = int (n / 2 )
# n must be odd at this
# point. So we can skip
# one element (Note i = i +2)
i = 3
while (i < = int (math.sqrt(n))) :
if (n % i = = 0 ) :
count = count + 1
while (n % i = = 0 ) :
n = int (n / i)
i = i + 2
# This condition is to
# handle the case when n
# is a prime number greater
# than 2
if (n > 2 ) :
count = count + 1
return count
# Driver Code
n = 51242183
print ( "The number of distinct prime factors is/are {}" .
format (exactPrimeFactorCount(n), end = "" ))
print ( "The value of log(log(n)) is {0:.4f}"
. format (math.log(math.log(n))))
# This code is contributed by Manish Shaw
# (manishshaw1)


C#

// C# program to count all prime factors
using System;
class GFG {
// A function to count prime factors of
// a given number n
static int exactPrimeFactorCount( int n)
{
int count = 0;
if (n % 2 == 0) {
count++;
while (n % 2 == 0)
n = n / 2;
}
// n must be odd at this point. So
// we can skip one element
// (Note i = i +2)
for ( int i = 3; i <= Math.Sqrt(n);
i = i + 2)
{
if (n % i == 0) {
count++;
while (n % i == 0)
n = n / i;
}
}
// This condition is to handle the
// case when n is a prime number
// greater than 2
if (n > 2)
count++;
return count;
}
// Driver function
public static void Main ()
{
int n = 51242183;
Console.WriteLine( "The number of"
+ " distinct prime factors is/are "
+ exactPrimeFactorCount(n));
Console.WriteLine( "The value of "
+ "log(log(n)) is "
+ Math.Log(Math.Log(n))) ;
}
}
// This code is contributed by anuj_67.


PHP

<?php
// PHP program to count all prime factors
// A function to count
// prime factors of
// a given number n
function exactPrimeFactorCount( $n )
{
$count = 0;
if ( $n % 2 == 0)
{
$count ++;
while ( $n % 2 == 0)
$n = $n / 2;
}
// n must be odd at this
// point. So we can skip
// one element (Note i = i +2)
for ( $i = 3; $i <= sqrt( $n ); $i = $i + 2)
{
if ( $n % $i == 0)
{
$count ++;
while ( $n % $i == 0)
$n = $n / $i ;
}
}
// This condition is to
// handle the case when n
// is a prime number greater
// than 2
if ( $n > 2)
$count ++;
return $count ;
}
// Driver Code
$n = 51242183;
echo "The number of distinct prime" .
" factors is/are " ,exactPrimeFactorCount( $n ), "" ;
echo "The value of log(log(n)) " .
"is " ,log(log( $n )), "" ;
// This code is contributed by m_kit
?>


Javascript

<script>
// Javascript program to count all prime factors
// A function to count
// prime factors of
// a given number n
function exactPrimeFactorCount(n)
{
let count = 0;
if (n % 2 == 0)
{
count++;
while (n % 2 == 0)
n = n / 2;
}
// n must be odd at this
// point. So we can skip
// one element (Note i = i +2)
for (let i = 3; i <= Math.sqrt(n); i = i + 2)
{
if (n % i == 0)
{
count++;
while (n % i == 0)
n = n / i;
}
}
// This condition is to
// handle the case when n
// is a prime number greater
// than 2
if (n > 2)
count++;
return count;
}
// Driver Code
let n = 51242183;
document.write( "The number of distinct prime factors is/are " +
exactPrimeFactorCount(n) + "<br>" );
document.write( "The value of log(log(n)) is " + Math.log(Math.log(n)) + "<br>" );
// This code is contributed by _saurabh_jaiswal
</script>


输出:

The number of distinct prime factors is/are 3The value of log(log(n)) is 2.8765

© 版权声明
THE END
喜欢就支持一下吧
点赞10 分享