给定三个正整数 a、 b 和 D .您当前位于无限二维坐标平面上的原点(0,0)。你可以跳到二维平面上的任意点,欧几里德距离等于 A. 或 B 从你现在的位置。任务是找到从(0,0)到达(d,0)所需的最小跳跃次数。
null
例如:
Input : a = 2, b = 3, d = 1 Output : 2 First jump of length a = 2, (0, 0) -> (1/2, √15/2) Second jump of length a = 2, (1/2, √15/2) -> (1, 0) Thus, only two jump are required to reach (1, 0) from (0, 0). Input : a = 3, b = 4, d = 11 Output : 3 (0, 0) -> (4, 0) using length b = 4 (4, 0) -> (8, 0) using length b = 4 (8, 0) -> (11, 0) using length a = 3
# Python code to find the minimum number # of jump required to reach # (d, 0) from (0, 0) def minJumps(a, b, d): temp = a a = min (a, b) b = max (temp, b) if (d > = b): return (d + b - 1 ) / b # if d is 0 if (d = = 0 ): return 0 # if d is equal to a. if (d = = a): return 1 # else make triangle, and only 2 # steps required. return 2 # main() a = 3 b = 4 d = 11 print ( int (minJumps(a, b, d))) # Contributed by _omg |
输出
3
请参阅完整的文章 从二维平面原点到达形状点(d,0)所需的给定长度的跳跃次数 更多细节!
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END