检查是否有任何有效序列可被M整除

给定一个由N个整数组成的数组,在元素之间使用“+”和“-”检查是否有方法形成一个数字序列,该序列的计算结果为可被M整除的数字

null

例如:

输入: arr={1,2,3,4,6} M=4 输出: 符合事实的 说明: 有一个有效的序列,即(1-2) +3+4+6),其计算结果为12 可以被4整除

输入: arr={1,3,9} M=2 输出: 错误的 说明: 没有计算为的序列 可被M整除的数。

A. 简单解决方案 是递归地考虑所有可能的方案(即使用a;+)。或者在元素之间使用“-”运算符,并保持存储结果的变量和。如果这个结果可以被M整除,则返回true,否则返回false。

递归实现如下所示:

C++

bool isPossible( int index, int sum)
{
// Base case
if (index == n) {
// check if sum is divisible by M
if ((sum % M) == 0)
return true ;
return false ;
}
// recursively call by considering '+'
// or '-' between index and index+1
// 1.Try placing '+'
bool placeAdd = isPossible(index + 1,
sum + arr[index]);
// 2. Try placing '-'
bool placeMinus = isPossible(index + 1,
sum - arr[index]);
if (placeAdd || placeMinus)
return true ;
return false ;
}


JAVA

static boolean isPossible( int index, int sum)
{
// Base case
if (index == n)
{
// Check if sum is divisible by M
if ((sum % M) == 0 )
return true ;
return false ;
}
// Recursively call by considering '+'
// or '-' between index and index+1
// 1.Try placing '+'
boolean placeAdd = isPossible(index + 1 ,
sum + arr[index]);
// 2. Try placing '-'
boolean placeMinus = isPossible(index + 1 ,
sum - arr[index]);
if (placeAdd || placeMinus)
return true ;
return false ;
}
// This code is contributed by rutvik_56.


Python3

def isPossible(index, sum ):
# Base case
if (index = = n):
# check if sum is divisible by M
if (( sum % M) = = 0 ):
return True ;
return False ;
# recursively call by considering '+'
# or '-' between index and index+1
# 1.Try placing '+'
placeAdd = isPossible(index + 1 , sum + arr[index]);
# 2. Try placing '-'
placeMinus = isPossible(index + 1 , sum - arr[index]);
if (placeAdd or placeMinus):
return True ;
return False ;
# This code is contributed by pratham76.


C#

static bool isPossible( int index, int sum)
{
// Base case
if (index == n)
{
// Check if sum is divisible by M
if ((sum % M) == 0)
return true ;
return false ;
}
// Recursively call by considering '+'
// or '-' between index and index+1
// 1.Try placing '+'
bool placeAdd = isPossible(index + 1,
sum + arr[index]);
// 2. Try placing '-'
bool placeMinus = isPossible(index + 1,
sum - arr[index]);
if (placeAdd || placeMinus)
return true ;
return false ;
}
// This code is contributed by divyesh072019


Javascript

<script>
function isPossible(index , sum)
{
// Base case
if (index == n)
{
// Check if sum is divisible by M
if ((sum % M) == 0)
return true ;
return false ;
}
// Recursively call by considering '+'
// or '-' between index and index+1
// 1.Try placing '+'
let placeAdd = isPossible(index + 1,
sum + arr[index]);
// 2. Try placing '-'
let placeMinus = isPossible(index + 1,
sum - arr[index]);
if (placeAdd || placeMinus)
return true ;
return false ;
}
// This code is contributed by Amit Katiyar
</script>


有重叠的子问题,如下图所示(注:图中表示递归树,直到索引=3)

Recursion Tree till index = 3

更好的方法: 要优化上述方法,请使用动态规划。

方法1: 我们采用两种状态的动态规划:- (i) 索引, (ii)总额 所以DP[index][sum]存储我们当前的索引,sum存储在该索引之前形成的序列的评估结果。

以下是上述方法的实施情况:

C++

// C++ program to check if any
// valid sequence is divisible by M
#include <bits/stdc++.h>
using namespace std;
const int MAX = 1000;
bool isPossible( int n, int index, int sum,
int M, int arr[], int dp[][MAX])
{
// Base case
if (index == n) {
// check if sum is divisible by M
if ((sum % M) == 0)
return true ;
return false ;
}
// check if the current state
// is already computed
if (dp[index][sum] != -1)
return dp[index][sum];
// 1.Try placing '+'
bool placeAdd = isPossible(n, index + 1,
sum + arr[index], M, arr, dp);
// 2. Try placing '-'
bool placeMinus = isPossible(n, index + 1,
sum - arr[index], M, arr, dp);
// calculate value of res for recursive case
bool res = (placeAdd || placeMinus);
// store the value for res for current
// states and return for parent call
dp[index][sum] = res;
return res;
}
int main()
{
int arr[] = { 1, 2, 3, 4, 6 };
int n = sizeof (arr)/ sizeof (arr[0]);
int M = 4;
int dp[n + 1][MAX];
memset (dp, -1, sizeof (dp));
bool res;
res = isPossible(n, 0, 0, M, arr, dp);
cout << (res ? "True" : "False" ) << endl;
return 0;
}


JAVA

// Java program to check if any
// valid sequence is divisible by M
import java.util.*;
class GFG
{
static final int MAX = 1000 ;
static boolean isPossible( int n, int index, int sum,
int M, int arr[], int dp[][])
{
// Base case
if (index == n)
{
// check if sum is divisible by M
if ((sum % M) == 0 )
return true ;
return false ;
}
else if (sum < 0 || sum >= MAX)
return false ;
// check if the current state
// is already computed
if (dp[index][sum] != - 1 )
{
if (dp[index][sum] == 0 )
return false ;
return true ;
}
// 1.Try placing '+'
boolean placeAdd = isPossible(n, index + 1 ,
sum + arr[index], M, arr, dp);
// 2. Try placing '-'
boolean placeMinus = isPossible(n, index + 1 ,
sum - arr[index], M, arr, dp);
// calculate value of res for recursive case
boolean res = (placeAdd || placeMinus);
// store the value for res for current
// states and return for parent call
dp[index][sum] = (res) ? 1 : 0 ;
return res;
}
// Driver code
public static void main(String args[])
{
int arr[] = { 1 , 2 , 3 , 4 , 6 };
int n = arr.length;
int M = 4 ;
int dp[][] = new int [n + 1 ][MAX];
for ( int i = 0 ; i < n + 1 ; i++)
Arrays.fill(dp[i], - 1 );
boolean res;
res = isPossible(n, 0 , 0 , M, arr, dp);
System.out.println((res ? "True" : "False" ));
}
}
// This code is contributed by ghanshyampandey


Python3

# Python3 program to check if any
# valid sequence is divisible by M
def isPossible(n, index, Sum , M, arr, dp):
global MAX
# Base case
if index = = n:
# check if sum is divisible by M
if ( Sum % M) = = 0 :
return True
return False
# check if the current state
# is already computed
if dp[index][ Sum ] ! = - 1 :
return dp[index][ Sum ]
# 1.Try placing '+'
placeAdd = isPossible(n, index + 1 ,
Sum + arr[index], M, arr, dp)
# 2. Try placing '-'
placeMinus = isPossible(n, index + 1 ,
Sum - arr[index], M, arr, dp)
# calculate value of res for recursive case
res = placeAdd or placeMinus
# store the value for res for current
# states and return for parent call
dp[index][ Sum ] = res
return res
MAX = 1000
arr = [ 1 , 2 , 3 , 4 , 6 ]
n = len (arr)
M = 4
dp = [[ - 1 ] * MAX for i in range (n + 1 )]
res = isPossible(n, 0 , 0 , M, arr, dp)
if res:
print ( True )
else :
print ( False )
# this code is contributed by PranchalK


C#

// C# program to check if any
// valid sequence is divisible by M
using System;
class GFG
{
static int MAX = 1000;
static Boolean isPossible( int n, int index, int sum,
int M, int []arr, int [,]dp)
{
// Base case
if (index == n)
{
// check if sum is divisible by M
if ((sum % M) == 0)
return true ;
return false ;
}
else if (sum < 0 || sum >= MAX)
return false ;
// check if the current state
// is already computed
if (dp[index,sum] != -1)
{
if (dp[index,sum] == 0)
return false ;
return true ;
}
// 1.Try placing '+'
Boolean placeAdd = isPossible(n, index + 1,
sum + arr[index],
M, arr, dp);
// 2. Try placing '-'
Boolean placeMinus = isPossible(n, index + 1,
sum - arr[index],
M, arr, dp);
// calculate value of res for recursive case
Boolean res = (placeAdd || placeMinus);
// store the value for res for current
// states and return for parent call
dp[index,sum] = (res) ? 1 : 0;
return res;
}
// Driver code
public static void Main(String []args)
{
int []arr = { 1, 2, 3, 4, 6 };
int n = arr.Length;
int M = 4;
int [,]dp = new int [n + 1, MAX];
for ( int i = 0; i < n + 1; i++)
for ( int j = 0; j < MAX; j++)
dp[i, j] = -1;
Boolean res;
res = isPossible(n, 0, 0, M, arr, dp);
Console.WriteLine((res ? "True" : "False" ));
}
}
// This code is contributed by PrinciRaj1992


Javascript

<script>
// javascript program to check if any
// valid sequence is divisible by M
var MAX = 1000;
function isPossible(n , index , sum,M , arr , dp)
{
// Base case
if (index == n)
{
// check if sum is divisible by M
if ((sum % M) == 0)
return true ;
return false ;
}
else if (sum < 0 || sum >= MAX)
return false ;
// check if the current state
// is already computed
if (dp[index][sum] != -1)
{
if (dp[index][sum] == 0)
return false ;
return true ;
}
// 1.Try placing '+'
var placeAdd = isPossible(n, index + 1,
sum + arr[index], M, arr, dp);
// 2. Try placing '-'
var placeMinus = isPossible(n, index + 1,
sum - arr[index], M, arr, dp);
// calculate value of res for recursive case
var res = (placeAdd || placeMinus);
// store the value for res for current
// states and return for parent call
dp[index][sum] = (res) ? 1 : 0;
return res;
}
// Driver code
var arr = [ 1, 2, 3, 4, 6 ];
var n = arr.length;
var M = 4;
var dp = Array(n+1).fill(-1).map(x => Array(MAX).fill(-1));
res = isPossible(n, 0, 0, M, arr, dp);
document.write((res ? "True" : "False" ));
// This code contributed by shikhasingrajput
</script>


输出:

True

时间复杂性: O(N*sum),其中sum是整数序列的最大可能和,N是数组中的元素数。

方法2(高效): 这比方法1更有效。在这里,我们也应用了动态规划,但有两种不同的状态: (i) 索引, (ii)模 所以DP[index][modulo]存储序列评估结果的模,直到该指数,M。

以下是上述方法的实施情况:

C++

#include <bits/stdc++.h>
using namespace std;
const int MAX = 100;
int isPossible( int n, int index, int modulo,
int M, int arr[], int dp[][MAX])
{
// Calculate modulo for this call
modulo = ((modulo % M) + M) % M;
// Base case
if (index == n) {
// check if sum is divisible by M
if (modulo == 0)
return 1;
return 0;
}
// check if the current state is
// already computed
if (dp[index][modulo] != -1)
return dp[index][modulo];
// 1.Try placing '+'
int placeAdd = isPossible(n, index + 1,
modulo + arr[index], M, arr, dp);
// 2. Try placing '-'
int placeMinus = isPossible(n, index + 1,
modulo - arr[index], M, arr, dp);
// calculate value of res for recursive
// case
bool res = (placeAdd || placeMinus);
// store the value for res for current
// states and return for parent call
dp[index][modulo] = res;
return res;
}
int main()
{
int arr[] = { 1, 2, 3, 4, 6 };
int n = sizeof (arr)/ sizeof (arr[0]);
int M = 4;
// MAX is the Maximum value M can take
int dp[n + 1][MAX];
memset (dp, -1, sizeof (dp));
bool res;
res = isPossible(n, 1, arr[0], M, arr, dp);
cout << (res ? "True" : "False" ) << endl;
return 0;
}


JAVA

// Java implementation of above approach
class GFG
{
static int MAX = 100 ;
static int isPossible( int n, int index, int modulo,
int M, int arr[], int dp[][])
{
// Calculate modulo for this call
modulo = ((modulo % M) + M) % M;
// Base case
if (index == n)
{
// check if sum is divisible by M
if (modulo == 0 )
{
return 1 ;
}
return 0 ;
}
// check if the current state is
// already computed
if (dp[index][modulo] != - 1 )
{
return dp[index][modulo];
}
// 1.Try placing '+'
int placeAdd = isPossible(n, index + 1 ,
modulo + arr[index], M, arr, dp);
// 2. Try placing '-'
int placeMinus = isPossible(n, index + 1 ,
modulo - arr[index], M, arr, dp);
// calculate value of res for
// recursive case
int res = placeAdd;
// store the value for res for current
// states and return for parent call
dp[index][modulo] = res;
return res;
}
// Driver code
public static void main(String[] args)
{
int arr[] = { 1 , 2 , 3 , 4 , 6 };
int n = arr.length;
int M = 4 ;
// MAX is the Maximum value M can take
int dp[][] = new int [n + 1 ][MAX];
for ( int i = 0 ; i < n + 1 ; i++)
{
for ( int j = 0 ; j < MAX; j++)
{
dp[i][j] = - 1 ;
}
}
boolean res;
if (isPossible(n, 1 , arr[ 0 ], M, arr, dp) == 1 )
{
res = true ;
}
else
{
res = false ;
}
System.out.println(res ? "True" : "False" );
}
}
// This code is contributed by
// PrinciRaj1992


Python3

# Python3 Program to Check if any
# valid sequence is divisible by M
MAX = 100
def isPossible(n, index, modulo,
M, arr, dp):
# Calculate modulo for this call
modulo = ((modulo % M) + M) % M
# Base case
if (index = = n):
# check if sum is divisible by M
if (modulo = = 0 ):
return 1
return 0
# check if the current state is
# already computed
if (dp[index][modulo] ! = - 1 ):
return dp[index][modulo]
# 1.Try placing '+'
placeAdd = isPossible(n, index + 1 , modulo +
arr[index], M, arr, dp)
# 2. Try placing '-'
placeMinus = isPossible(n, index + 1 , modulo -
arr[index], M, arr, dp)
# calculate value of res
# for recursive case
res = bool (placeAdd or placeMinus)
# store the value for res for current
# states and return for parent call
dp[index][modulo] = res
return res
# Driver code
arr = [ 1 , 2 , 3 , 4 , 6 ]
n = len (arr)
M = 4
# MAX is the Maximum value
# M can take
dp = [[ - 1 ] * (n + 1 )] * MAX
res = isPossible(n, 1 , arr[ 0 ],
M, arr, dp)
if (res = = True ):
print ( "True" )
else :
print ( "False" )
# This code is contributed by ash264


C#

// C# implementation of above approach
using System;
class GFG
{
static int MAX = 100;
static int isPossible( int n, int index, int modulo,
int M, int []arr, int [,]dp)
{
// Calculate modulo for this call
modulo = ((modulo % M) + M) % M;
// Base case
if (index == n)
{
// check if sum is divisible by M
if (modulo == 0)
{
return 1;
}
return 0;
}
// check if the current state is
// already computed
if (dp[index, modulo] != -1)
{
return dp[index, modulo];
}
// 1.Try placing '+'
int placeAdd = isPossible(n, index + 1,
modulo + arr[index], M, arr, dp);
// 2. Try placing '-'
int placeMinus = isPossible(n, index + 1,
modulo - arr[index], M, arr, dp);
// calculate value of res for
// recursive case
int res = placeAdd;
// store the value for res for current
// states and return for parent call
dp[index, modulo] = res;
return res;
}
// Driver code
public static void Main()
{
int []arr = {1, 2, 3, 4, 6};
int n = arr.Length;
int M = 4;
// MAX is the Maximum value M can take
int [,]dp = new int [n + 1,MAX];
for ( int i = 0; i < n + 1; i++)
{
for ( int j = 0; j < MAX; j++)
{
dp[i, j] = -1;
}
}
bool res;
if (isPossible(n, 1, arr[0], M, arr, dp) == 1)
{
res = true ;
}
else
{
res = false ;
}
Console.WriteLine(res ? "True" : "False" );
}
}
//This code is contributed by 29AjayKumar


Javascript

<script>
// Javascript implementation of above approach
const MAX = 100;
function isPossible(n, index, modulo, M, arr, dp)
{
// Calculate modulo for this call
modulo = ((modulo % M) + M) % M;
// Base case
if (index == n)
{
// Check if sum is divisible by M
if (modulo == 0)
{
return 1;
}
return 0;
}
// check if the current state is
// already computed
if (dp[index][modulo] != -1)
{
return dp[index][modulo];
}
// 1.Try placing '+'
var placeAdd = isPossible(n, index + 1,
modulo + arr[index],
M, arr, dp);
// 2. Try placing '-'
var placeMinus = isPossible(n, index + 1,
modulo - arr[index],
M, arr, dp);
// Calculate value of res for
// recursive case
var res = placeAdd;
// Store the value for res for current
// states and return for parent call
dp[index][modulo] = res;
return res;
}
// Driver code
var arr = [ 1, 2, 3, 4, 6 ];
var n = arr.length;
var M = 4;
// MAX is the Maximum value M can take
var dp = Array(n + 1);
for (i = 0; i < n + 1; i++)
{
dp[i] = Array(MAX).fill(-1);
}
var res;
if (isPossible(n, 1, arr[0], M, arr, dp) == 1)
{
res = true ;
}
else
{
res = false ;
}
document.write(res ? "True" : "False" );
// This code is contributed by gauravrajput1
</script>


输出

True

时间复杂性: O(N*M)。

有效方法: 按照以下步骤解决问题:

  • 估计 所有数组元素的模 关于给定的数字,并将其存储在新数组中,比如ModArray[]。
  • 计算ModArray的和并将其存储在和中,检查和%M==0,然后输出为“真”并返回。
  • 如果总和为奇数,则不存在以下情况,即无法计算为可被M整除的数字。打印“False”并返回。
  • 检查总和是否为偶数,然后将其除以2,这是因为我们之前对它们进行了求和,现在的任务是删除它,因此需要删除两次,因此数字应该为偶数。
  • 从ModArray中删除第一个元素,因为不能在第一个元素上加负号。
  • 现在,这个解被转化为一个问题,我们要评估是否存在一个解,使得ModArray元素的和等于和或不等于和。

以下是上述方法的实施情况:

C++

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to check if any valid
// sequence is divisible by M
void func( int n, int m, int A[])
{
// DEclare mod array
vector< int > ModArray(n);
int sum = 0;
// Calculate the mod array
for ( int i = 0; i < n; i++) {
ModArray[i] = A[i] % m;
sum += ModArray[i];
}
sum = sum % m;
// Check if sum is divisible by M
if (sum % m == 0) {
cout << "True" ;
return ;
}
// Check if sum is not divisible by 2
if (sum % 2 != 0) {
cout << "False" ;
}
else {
// Remove the first element from
// the ModArray since it is not
// possible to place minus
// on the first element
ModArray.erase(ModArray.begin());
int i = 0;
// Decrease the size of array
int j = ModArray.size() - 1;
// Sort the array
sort(ModArray.begin(), ModArray.end());
sum = sum / 2;
int i1, i2;
// Loop until the pointer
// cross each other
while (i <= j) {
int s = ModArray[i] + ModArray[j];
// Check if sum becomes equal
if (s == sum) {
i1 = i;
i2 = j;
cout << "True" ;
break ;
}
// Increase and decrease
// the pointer accordingly
else if (s > sum)
j--;
else
i++;
}
}
}
// Driver code
int main()
{
int m = 2;
int a[] = { 1, 3, 9 };
int n = sizeof a / sizeof a[0];
// Function call
func(n, m, a);
}


JAVA

// Java program for the above approach
import java.util.*;
class GFG{
// Function to check if any valid
// sequence is divisible by M
static void func( int n, int m, int []A)
{
// Declare mod array
Vector<Integer> ModArray = new Vector<>();
for ( int i = 0 ; i < n; i++)
ModArray.add( 0 );
int sum = 0 ;
// Calculate the mod array
for ( int i = 0 ; i < n; i++)
{
ModArray.set(i, A[i] % m);
sum += (( int )ModArray.get(i));
}
sum = sum % m;
// Check if sum is divisible by M
if (sum % m == 0 )
{
System.out.println( "True" );
return ;
}
// Check if sum is not divisible by 2
if (sum % 2 != 0 )
{
System.out.println( "False" );
}
else
{
// Remove the first element from
// the ModArray since it is not
// possible to place minus
// on the first element
ModArray.remove( 0 );
int i = 0 ;
// Decrease the size of array
int j = ModArray.size() - 1 ;
// Sort the array
Collections.sort(ModArray);
sum = sum / 2 ;
int i1, i2;
// Loop until the pointer
// cross each other
while (i <= j)
{
int s = ( int )ModArray.get(i) +
( int )ModArray.get(j);
// Check if sum becomes equal
if (s == sum)
{
i1 = i;
i2 = j;
System.out.println( "True" );
break ;
}
// Increase and decrease
// the pointer accordingly
else if (s > sum)
j--;
else
i++;
}
}
}
// Driver code
public static void main(String args[])
{
int m = 2 ;
int []a = { 1 , 3 , 9 };
int n = a.length;
// Function call
func(n, m, a);
}
}
// This code is contributed by Stream_Cipher


Python3

# Python3 program for the above approach
# Function to check if any valid
# sequence is divisible by M
def func(n, m, A):
# DEclare mod array
ModArray = [ 0 ] * n
Sum = 0
# Calculate the mod array
for i in range (n):
ModArray[i] = A[i] % m
Sum + = ModArray[i]
Sum = Sum % m
# Check if sum is divisible by M
if ( Sum % m = = 0 ) :
print ( "True" )
return
# Check if sum is not divisible by 2
if ( Sum % 2 ! = 0 ) :
print ( "False" )
else :
# Remove the first element from
# the ModArray since it is not
# possible to place minus
# on the first element
ModArray.pop( 0 )
i = 0
# Decrease the size of array
j = len (ModArray) - 1
# Sort the array
ModArray.sort()
Sum = Sum / / 2
# Loop until the pointer
# cross each other
while (i < = j) :
s = ModArray[i] + ModArray[j]
# Check if sum becomes equal
if (s = = Sum ) :
i1 = i
i2 = j
print ( "True" )
break
# Increase and decrease
# the pointer accordingly
elif (s > Sum ):
j - = 1
else :
i + = 1
# Driver code
m = 2
a = [ 1 , 3 , 9 ]
n = len (a)
# Function call
func(n, m, a)
# This code is contributed by divyeshrabadiya07


C#

// C# program for the above approach
using System.Collections.Generic;
using System;
class GFG{
// Function to check if any valid
// sequence is divisible by M
static void func( int n, int m, int []A)
{
// Declare mod array
List< int > ModArray = new List< int >();
for ( int i = 0; i < n; i++)
ModArray.Add(0);
int sum = 0;
// Calculate the mod array
for ( int i = 0; i < n; i++)
{
ModArray[i] = (A[i] % m);
sum += (( int )ModArray[i]);
}
sum = sum % m;
// Check if sum is divisible by M
if (sum % m == 0)
{
Console.WriteLine( "True" );
return ;
}
// Check if sum is not divisible by 2
if (sum % 2 != 0)
{
Console.WriteLine( "False" );
}
else
{
// Remove the first element from
// the ModArray since it is not
// possible to place minus
// on the first element
ModArray.Remove(0);
int i = 0;
// Decrease the size of array
int j = ModArray.Count - 1;
// Sort the array
ModArray.Sort();
sum = sum / 2;
int i1, i2;
// Loop until the pointer
// cross each other
while (i <= j)
{
int s = ( int )ModArray[i] +
( int )ModArray[j];
// Check if sum becomes equal
if (s == sum)
{
i1 = i;
i2 = j;
Console.WriteLine( "True" );
break ;
}
// Increase and decrease
// the pointer accordingly
else if (s > sum)
j--;
else
i++;
}
}
}
// Driver code
public static void Main()
{
int m = 2;
int []a = { 1, 3, 9 };
int n = a.Length;
// Function call
func(n, m, a);
}
}
// This code is contributed by Stream_Cipher


Javascript

<script>
// Javascript program for the above approach
// Function to check if any valid
// sequence is divisible by M
function func(n, m, A)
{
// Declare mod array
let ModArray = [];
for (let i = 0; i < n; i++)
ModArray.push(0);
let sum = 0;
// Calculate the mod array
for (let i = 0; i < n; i++)
{
ModArray[i] = A[i] % m;
sum += ModArray[i];
}
sum = sum % m;
// Check if sum is divisible by M
if (sum % m == 0)
{
document.write( "True" );
return ;
}
// Check if sum is not divisible by 2
if (sum % 2 != 0)
{
document.write( "False" );
}
else
{
// Remove the first element from
// the ModArray since it is not
// possible to place minus
// on the first element
ModArray.shift();
let i = 0;
// Decrease the size of array
let j = ModArray.length - 1;
// Sort the array
ModArray.sort( function (a, b){ return a - b});
sum = parseInt(sum / 2, 10);
let i1, i2;
// Loop until the pointer
// cross each other
while (i <= j)
{
let s = ModArray[i] + ModArray[j];
// Check if sum becomes equal
if (s == sum)
{
i1 = i;
i2 = j;
document.write( "True" );
break ;
}
// Increase and decrease
// the pointer accordingly
else if (s > sum)
j--;
else
i++;
}
}
}
let m = 2;
let a = [ 1, 3, 9 ];
let n = a.length;
// Function call
func(n, m, a);
</script>


输出

False

时间复杂性: O(n*logn)

© 版权声明
THE END
喜欢就支持一下吧
点赞12 分享