打印二项式展开级数的程序

给定三个整数A、X和n,任务是打印以下二项表达式系列的项。 (A+X) N = N C 0 A. N 十、 0 + N C 1. A. n-1 十、 1. + N C 2. A. n-2 十、 2. +….+ N C N A. 0 十、 N 例如:

null
Input : A = 1, X = 1, n = 5Output : 1 5 10 10 5 1Input : A = 1, B = 2, n = 6Output : 1 12 60 160 240 192 64 

简单的解决方案: 我们知道,对于n的每一个值,在二项级数中都会有(n+1)项。现在我们使用一种简单的方法,计算序列中每个元素的值并打印出来。

nCr = (n!) / ((n-r)! * (r)!)Below is value of general term. Tr+1 = nCn-rAn-rXrSo at each position we have to find the value of the general term and print that term .

C++

// CPP program to print terms of binomial
// series and also calculate sum of series.
#include <bits/stdc++.h>
using namespace std;
// function to calculate factorial of
// a number
int factorial( int n)
{
int f = 1;
for ( int i = 2; i <= n; i++)
f *= i;
return f;
}
// function to print the series
void series( int A, int X, int n)
{
// calculating the value of n!
int nFact = factorial(n);
// loop to display the series
for ( int i = 0; i < n + 1; i++) {
// For calculating the
// value of nCr
int niFact = factorial(n - i);
int iFact = factorial(i);
// calculating the value of
// A to the power k and X to
// the power k
int aPow = pow (A, n - i);
int xPow = pow (X, i);
// display the series
cout << (nFact * aPow * xPow) /
(niFact * iFact) << " " ;
}
}
// main function started
int main()
{
int A = 3, X = 4, n = 5;
series(A, X, n);
return 0;
}


JAVA

// Java program to print terms of binomial
// series and also calculate sum of series.
import java.io.*;
class GFG {
// function to calculate factorial of
// a number
static int factorial( int n)
{
int f = 1 ;
for ( int i = 2 ; i <= n; i++)
f *= i;
return f;
}
// function to print the series
static void series( int A, int X, int n)
{
// calculating the value of n!
int nFact = factorial(n);
// loop to display the series
for ( int i = 0 ; i < n + 1 ; i++) {
// For calculating the
// value of nCr
int niFact = factorial(n - i);
int iFact = factorial(i);
// calculating the value of
// A to the power k and X to
// the power k
int aPow = ( int )Math.pow(A, n - i);
int xPow = ( int )Math.pow(X, i);
// display the series
System.out.print((nFact * aPow * xPow)
/ (niFact * iFact) + " " );
}
}
// main function started
public static void main(String[] args)
{
int A = 3 , X = 4 , n = 5 ;
series(A, X, n);
}
}
// This code is contributed by vt_m.


Python3

# Python3 program to print terms of binomial
# series and also calculate sum of series.
# function to calculate factorial
# of a number
def factorial(n):
f = 1
for i in range ( 2 , n + 1 ):
f * = i
return f
# Function to print the series
def series(A, X, n):
# calculating the value of n!
nFact = factorial(n)
# loop to display the series
for i in range ( 0 , n + 1 ):
# For calculating the
# value of nCr
niFact = factorial(n - i)
iFact = factorial(i)
# calculating the value of
# A to the power k and X to
# the power k
aPow = pow (A, n - i)
xPow = pow (X, i)
# display the series
print ( int ((nFact * aPow * xPow) /
(niFact * iFact)), end = " " )
# Driver Code
A = 3 ; X = 4 ; n = 5
series(A, X, n)
# This code is contributed by Smitha Dinesh Semwal.


C#

// C# program to print terms of binomial
// series and also calculate sum of series.
using System;
class GFG {
// function to calculate factorial of
// a number
static int factorial( int n)
{
int f = 1;
for ( int i = 2; i <= n; i++)
f *= i;
return f;
}
// function to print the series
static void series( int A, int X, int n)
{
// calculating the value of n!
int nFact = factorial(n);
// loop to display the series
for ( int i = 0; i < n + 1; i++) {
// For calculating the
// value of nCr
int niFact = factorial(n - i);
int iFact = factorial(i);
// calculating the value of
// A to the power k and X to
// the power k
int aPow = ( int )Math.Pow(A, n - i);
int xPow = ( int )Math.Pow(X, i);
// display the series
Console.Write((nFact * aPow * xPow)
/ (niFact * iFact) + " " );
}
}
// main function started
public static void Main()
{
int A = 3, X = 4, n = 5;
series(A, X, n);
}
}
// This code is contributed by anuj_67.


PHP

<?php
// PHP program to print
// terms of binomial
// series and also
// calculate sum of series.
// function to calculate
// factorial of a number
function factorial( $n )
{
$f = 1;
for ( $i = 2; $i <= $n ; $i ++)
$f *= $i ;
return $f ;
}
// function to print the series
function series( $A , $X , $n )
{
// calculating the
// value of n!
$nFact = factorial( $n );
// loop to display
// the series
for ( $i = 0; $i < $n + 1; $i ++)
{
// For calculating the
// value of nCr
$niFact = factorial( $n - $i );
$iFact = factorial( $i );
// calculating the value of
// A to the power k and X to
// the power k
$aPow = pow( $A , $n - $i );
$xPow = pow( $X , $i );
// display the series
echo ( $nFact * $aPow * $xPow ) /
( $niFact * $iFact ) , " " ;
}
}
// Driver Code
$A = 3;
$X = 4;
$n = 5;
series( $A , $X , $n );
// This code is contributed by anuj_67.
?>


Javascript

<script>
// JavaScript program to print terms of binomial
// series and also calculate sum of series.
// function to calculate factorial of
// a number
function factorial(n)
{
let f = 1;
for (let i = 2; i <= n; i++)
f *= i;
return f;
}
// function to print the series
function series(A, X, n)
{
// calculating the value of n!
let nFact = factorial(n);
// loop to display the series
for (let i = 0; i < n + 1; i++) {
// For calculating the
// value of nCr
let niFact = factorial(n - i);
let iFact = factorial(i);
// calculating the value of
// A to the power k and X to
// the power k
let aPow = Math.pow(A, n - i);
let xPow = Math.pow(X, i);
// display the series
document.write((nFact * aPow * xPow)
/ (niFact * iFact) + " " );
}
}
// Driver Code
let A = 3, X = 4, n = 5;
series(A, X, n);
// This code is contributed by chinmoy1997pal.
</script>


输出:

243 1620 4320 5760 3840 1024 

高效的解决方案: 这个想法是用上一个术语计算下一个术语。我们可以在O(1)时间内计算下一项。我们使用下面的属性 二项式系数 . N C i+1 = N C *(n-i)/(i+1)

C++

// CPP program to print terms of binomial
// series and also calculate sum of series.
#include <bits/stdc++.h>
using namespace std;
// function to print the series
void series( int A, int X, int n)
{
// Calculating and printing first term
int term = pow (A, n);
cout << term << " " ;
// Computing and printing remaining terms
for ( int i = 1; i <= n; i++) {
// Find current term using previous terms
// We increment power of X by 1, decrement
// power of A by 1 and compute nCi using
// previous term by multiplying previous
// term with (n - i + 1)/i
term = term * X * (n - i + 1)/(i * A);
cout << term << " " ;
}
}
// main function started
int main()
{
int A = 3, X = 4, n = 5;
series(A, X, n);
return 0;
}


JAVA

// Java program to print terms of binomial
// series and also calculate sum of series.
import java.io.*;
class GFG {
// function to print the series
static void series( int A, int X, int n)
{
// Calculating and printing first
// term
int term = ( int )Math.pow(A, n);
System.out.print(term + " " );
// Computing and printing
// remaining terms
for ( int i = 1 ; i <= n; i++) {
// Find current term using
// previous terms We increment
// power of X by 1, decrement
// power of A by 1 and compute
// nCi using previous term by
// multiplying previous term
// with (n - i + 1)/i
term = term * X * (n - i + 1 )
/ (i * A);
System.out.print(term + " " );
}
}
// main function started
public static void main(String[] args)
{
int A = 3 , X = 4 , n = 5 ;
series(A, X, n);
}
}
// This code is contributed by vt_m.


Python3

# Python 3 program to print terms of binomial
# series and also calculate sum of series.
# Function to print the series
def series(A, X, n):
# Calculating and printing first term
term = pow (A, n)
print (term, end = " " )
# Computing and printing remaining terms
for i in range ( 1 , n + 1 ):
# Find current term using previous terms
# We increment power of X by 1, decrement
# power of A by 1 and compute nCi using
# previous term by multiplying previous
# term with (n - i + 1)/i
term = int (term * X * (n - i + 1 ) / (i * A))
print (term, end = " " )
# Driver Code
A = 3 ; X = 4 ; n = 5
series(A, X, n)
# This code is contributed by Smitha Dinesh Semwal.


C#

// C# program to print terms of binomial
// series and also calculate sum of series.
using System;
public class GFG {
// function to print the series
static void series( int A, int X, int n)
{
// Calculating and printing first
// term
int term = ( int )Math.Pow(A, n);
Console.Write(term + " " );
// Computing and printing
// remaining terms
for ( int i = 1; i <= n; i++) {
// Find current term using
// previous terms We increment
// power of X by 1, decrement
// power of A by 1 and compute
// nCi using previous term by
// multiplying previous term
// with (n - i + 1)/i
term = term * X * (n - i + 1)
/ (i * A);
Console.Write(term + " " );
}
}
// main function started
public static void Main()
{
int A = 3, X = 4, n = 5;
series(A, X, n);
}
}
// This code is contributed by anuj_67.


PHP

<?php
// PHP program to print
// terms of binomial
// series and also
// calculate sum of
// series.
// function to print
// the series
function series( $A , $X , $n )
{
// Calculating and printing
// first term
$term = pow( $A , $n );
echo $term , " " ;
// Computing and printing
// remaining terms
for ( $i = 1; $i <= $n ; $i ++)
{
// Find current term
// using previous terms
// We increment power
// of X by 1, decrement
// power of A by 1 and
// compute nCi using
// previous term by
// multiplying previous
// term with (n - i + 1)/i
$term = $term * $X * ( $n - $i + 1) /
( $i * $A );
echo $term , " " ;
}
}
// Driver Code
$A = 3;
$X = 4;
$n = 5;
series( $A , $X , $n );
// This code is contributed by anuj_67.
?>


Javascript

<script>
// JavaScript program to print terms of binomial
// series and also calculate sum of series.
// function to print the series
function series(A, X, n)
{
// Calculating and printing first term
let term = Math.pow(A, n);
document.write(term + " " );
// Computing and printing remaining terms
for (let i = 1; i <= n; i++) {
// Find current term using previous terms
// We increment power of X by 1, decrement
// power of A by 1 and compute nCi using
// previous term by multiplying previous
// term with (n - i + 1)/i
term = term * X * (n - i + 1)/(i * A);
document.write(term + " " );
}
}
// main function started
let A = 3, X = 4, n = 5;
series(A, X, n);
// This code is contributed by Surbhi Tyagi.
</script>


输出:

243 1620 4320 5760 3840 1024 

© 版权声明
THE END
喜欢就支持一下吧
点赞12 分享