n中质数r的幂!

给定一个整数n,求给定素数(r)在n中的幂! 例如:

null
Input  : n = 6  r = 3         Factorial of 6 is 720 = 2^4 * 3^2 *5 (prime factor 2,3,5)         and power of 3 is 2 Output : 2Input  : n = 2000 r = 7Output : 330

一个简单的方法是先计算n的阶乘,然后对它进行阶乘运算,求出素数的幂。 上述方法可能会导致稍大的数字溢出,因为数字的阶乘是一个大数字。其思想是考虑阶乘n的素因子。 n的勒让德分解! 对于任意素数p和任意整数n,让 副总裁(n) 是p除以n的最大幂的指数(即n的p-adic估值)。然后 Vp(n)=楼层(n/p^i)和i的总和从1到无穷大 虽然右边的公式是一个无限和,但对于n和p的任何特定值,它只有有限多个非零项:对于每一个足够大到p^i>n的i,一个有下限(n/p^i)=0。因为,和是收敛的。

Power of ‘r’ in n! = floor(n/r) + floor(n/r^2) + floor(n/r^3) + ....

计算n中r的幂的程序!基于上述公式。

C++

// C++ program to find power of
// a prime number ‘r’ in n!
#include <bits/stdc++.h>
using namespace std;
// Function to return power of a
// no. 'r' in factorial of n
int power( int n, int r)
{
// Keep dividing n by powers of
// 'r' and update count
int count = 0;
for ( int i = r; (n / i) >= 1; i = i * r)
count += n / i;
return count;
}
// Driver program to
// test above function
int main()
{
int n = 6,  r = 3;
printf ( " %d " , power(n, r));
return 0;
}


JAVA

// Java program to find power of
// a prime number 'r' in n!
class GFG {
// Function to return power of a
// no. 'r' in factorial of n
static int power( int n, int r) {
// Keep dividing n by powers of
// 'r' and update count
int count = 0 ;
for ( int i = r; (n / i) >= 1 ; i = i * r)
count += n / i;
return count;
}
// Driver code
public static void main(String[] args)
{
int n = 6 , r = 3 ;
System.out.print(power(n, r));
}
}
// This code is contributed by Anant Agarwal.


Python3

# Python3 program to find power
# of a prime number ‘r’ in n!
# Function to return power of a
# no. 'r' in factorial of n
def power(n, r):
# Keep dividing n by powers of
# 'r' and update count
count = 0 ; i = r
while ((n / i) > = 1 ):
count + = n / i
i = i * r
return int (count)
# Driver Code
n = 6 ; r = 3
print (power(n, r))
# This code is contributed by Smitha Dinesh Semwal.


C#

// C# program to find power of
// a prime number 'r' in n!
using System;
class GFG {
// Function to return power of a
// no. 'r' in factorial of n
static int power( int n, int r) {
// Keep dividing n by powers of
// 'r' and update count
int count = 0;
for ( int i = r; (n / i) >= 1; i = i * r)
count += n / i;
return count;
}
// Driver code
public static void Main()
{
int n = 6, r = 3;
Console.WriteLine(power(n, r));
}
}
// This code is contributed by vt_m.


PHP

<?php
//PHP program to find power of
// a prime number ‘r’ in n!
// Function to return power of a
// no. 'r' in factorial of n
function power( $n , $r )
{
// Keep dividing n by powers
// of 'r' and update count
$count = 0;
for ( $i = $r ; ( $n / $i ) >= 1;
$i = $i * $r )
$count += $n / $i ;
return $count ;
}
// Driver Code
$n = 6; $r = 3;
echo power( $n , $r );
// This code is contributed by ajit
?>


Javascript

<script>
// JavaScript program to find power of
// a prime number 'r' in n!
// Function to return power of a
// no. 'r' in factorial of n
function power(n, r) {
// Keep dividing n by powers of
// 'r' and update count
let count = 0;
for (let i = r; (n / i) >= 1; i = i * r)
count += n / i;
return count;
}
// Driver code
let n = 6, r = 3;
document.write(power(n, r));
// This code is contributed by souravghosh0416.
</script>


输出:

2

© 版权声明
THE END
喜欢就支持一下吧
点赞12 分享