求解微分方程的欧拉方法

给出一个初始条件为y(x0)=y0的微分方程dy/dx=f(x,y)。使用 欧拉法 . 欧拉法: 在数学和计算科学中,Euler方法(也称为forward) 欧拉方法是求解常微分方程的一阶数值方法 具有给定初始值的方程(ODE)。 考虑初始条件y(x0)=y0的微分方程Dy/Dx= f(x,y) 然后,该方程的逐次逼近可通过以下公式得出:

null

y(n+1)=y(n)+h*f(x(n),y(n)) 其中h=(x(n)–x(0))/n h表示步长。选择较小的 h值会导致更准确的结果 以及更多的计算时间。

例子:

    Consider below differential equation            dy/dx = (x + y + xy)    with initial condition y(0) = 1     and step size h = 0.025.    Find y(0.1).       Solution:    f(x, y) = (x + y + xy)    x0 = 0, y0 = 1, h = 0.025    Now we can calculate y1 using Euler formula    y1 = y0 + h * f(x0, y0)    y1 = 1 + 0.025 *(0 + 1 + 0 * 1)    y1 = 1.025    y(0.025) = 1.025.    Similarly we can calculate y(0.050), y(0.075), ....y(0.1).    y(0.1) = 1.11167

C++

/* CPP  Program to find approximation
of a ordinary differential equation
using euler method.*/
#include <iostream>
using namespace std;
// Consider a differential equation
// dy/dx=(x + y + xy)
float func( float x, float y)
{
return (x + y + x * y);
}
// Function for Euler formula
void euler( float x0, float y, float h, float x)
{
float temp = -0;
// Iterating till the point at which we
// need approximation
while (x0 < x) {
temp = y;
y = y + h * func(x0, y);
x0 = x0 + h;
}
// Printing approximation
cout << "Approximate solution at x = "
<< x << "  is  " << y << endl;
}
// Driver program
int main()
{
// Initial Values
float x0 = 0;
float y0 = 1;
float h = 0.025;
// Value of x at which we need approximation
float x = 0.1;
euler(x0, y0, h, x);
return 0;
}


JAVA

// Java program to find approximation of an ordinary
// differential equation using euler method
import java.io.*;
class Euler {
// Consider a differential equation
// dy/dx=(x + y + xy)
float func( float x, float y)
{
return (x + y + x * y);
}
// Function for Euler formula
void euler( float x0, float y, float h, float x)
{
float temp = - 0 ;
// Iterating till the point at which we
// need approximation
while (x0 < x) {
temp = y;
y = y + h * func(x0, y);
x0 = x0 + h;
}
// Printing approximation
System.out.println( "Approximate solution at x = "
+ x + " is " + y);
}
// Driver program
public static void main(String args[]) throws IOException
{
Euler obj = new Euler();
// Initial Values
float x0 = 0 ;
float y0 = 1 ;
float h = 0 .025f;
// Value of x at which we need approximation
float x = 0 .1f;
obj.euler(x0, y0, h, x);
}
}
// This code is contributed by Anshika Goyal.


Python3

# Python Code to find approximation
# of a ordinary differential equation
# using euler method.
# Consider a differential equation
# dy / dx =(x + y + xy)
def func( x, y ):
return (x + y + x * y)
# Function for euler formula
def euler( x0, y, h, x ):
temp = - 0
# Iterating till the point at which we
# need approximation
while x0 < x:
temp = y
y = y + h * func(x0, y)
x0 = x0 + h
# Printing approximation
print ( "Approximate solution at x = " , x, " is " , "%.6f" % y)
# Driver Code
# Initial Values
x0 = 0
y0 = 1
h = 0.025
# Value of x at which we need approximation
x = 0.1
euler(x0, y0, h, x)


C#

// C# program to find approximation of an ordinary
// differential equation using euler method
using System;
class GFG {
// Consider a differential equation
// dy/dx=(x + y + xy)
static float func( float x, float y)
{
return (x + y + x * y);
}
// Function for Euler formula
static void euler( float x0, float y, float h, float x)
{
// Iterating till the point at which we
// need approximation
while (x0 < x) {
y = y + h * func(x0, y);
x0 = x0 + h;
}
// Printing approximation
Console.WriteLine( "Approximate solution at x = "
+ x + " is " + y);
}
// Driver program
public static void Main()
{
// Initial Values
float x0 = 0;
float y0 = 1;
float h = 0.025f;
// Value of x at which we need
// approximation
float x = 0.1f;
euler(x0, y0, h, x);
}
}
// This code is contributed by Vt_m.


PHP

<?php
// PHP Program to find approximation
// of a ordinary differential equation
// using euler method
// Consider a differential equation
// dy/dx=(x + y + xy)
function func( $x , $y )
{
return ( $x + $y + $x * $y );
}
// Function for Euler formula
function euler( $x0 , $y , $h , $x )
{
$temp = -0;
// Iterating till the point
// at which we need approximation
while ( $x0 < $x )
{
$temp = $y ;
$y = $y + $h * func( $x0 , $y );
$x0 = $x0 + $h ;
}
// Printing approximation
echo "Approximate solution at x = " ,
$x , " is " , $y , "" ;
}
// Driver Code
// Initial Values
$x0 = 0;
$y0 = 1;
$h = 0.025;
// Value of x at which
// we need approximation
$x = 0.1;
euler( $x0 , $y0 , $h , $x );
// This code contributed by aj_36
?>


Javascript

<script>
// JavaScript program to find approximation of an ordinary
// differential equation using euler method
// Consider a differential equation
// dy/dx=(x + y + xy)
function func(x, y)
{
return (x + y + x * y);
}
// Function for Euler formula
function euler(x0, y, h, x)
{
let temp = -0;
// Iterating till the point at which we
// need approximation
while (x0 < x) {
temp = y;
y = y + h * func(x0, y);
x0 = x0 + h;
}
// Printing approximation
document.write( "Approximate solution at x = "
+ x + " is " + y);
}
// Driver Code
// Initial Values
let x0 = 0;
let y0 = 1;
let h = 0.025;
// Value of x at which we need approximation
let x = 0.1;
euler(x0, y0, h, x);
// This code is contributed by chinmoy1997pal.
</script>


输出:

Approximate solution at x = 0.1  is  1.11167

© 版权声明
THE END
喜欢就支持一下吧
点赞10 分享