N表示为4个素数的和

将给定的数表示为4个正素数的和。如果无法表达,则打印“-1”。

null

例如:

Input: 24Output: 3 11 3 7  Explanation : 3+11+3+7 = 24 and 3, 11, 7 are all prime. Input: 46Output: 11 11 17 7 explanation : 11+11+17+7 = 46 and 11, 7, 17 are all prime.

方法: 每一个大于2的偶数整数都可以表示为两个数的和 哥德巴赫猜想 . 下面是一些将数字表示为4个素数之和的事实。

  • 数字必须大于或等于8,因为2是最小的素数
  • 如果给定的数是偶数,我们可以把它分解为(2+2)+x,这样x就保持偶数,并且可以分解成两个素数。
  • 如果给定的数是奇数,我们可以把它分解为(2+3)+x,这样x保持偶数,并且可以分解为两个素数。

现在我们可以很容易地用两个素数的和来表示n 链接

C++

// CPP program to express n as sum of 4 primes.
#include <bits/stdc++.h>
using namespace std;
// function to check if a number is prime or not
int isPrime( int x)
{
// does square root of the number
int s = sqrt (x);
// traverse from 2 to sqrt(n)
for ( int i = 2; i <= s; i++)
// if any divisor found then non prime
if (x % i == 0)
return 0;
// if no divisor is found then it is a prime
return 1;
}
void Num( int x, int & a, int & b)
{
// iterates to check prime or not
for ( int i = 2; i <= x / 2; i++) {
// calls function to check if i and x-i
// is prime or not
if (isPrime(i) && isPrime(x - i)) {
a = i;
b = x - i;
// if two prime numbers are found,
// then return
return ;
}
}
}
// function to generate 4 prime numbers adding upto n
void generate( int n)
{
// if n<=7 then 4 numbers cannot sum to
// get that number
if (n <= 7)
cout << "Impossible to form" << endl;
// a and b stores the last two numbers
int a, b;
// if it is not even then 2 and 3 are first
// two of sequence
if (n % 2 != 0) {
// calls the function to get the other
// two prime numbers considering first two
// primes as 2 and 3 (Note 2 + 3 = 5)
Num(n - 5, a, b);
// print 2 and 3 as the firsts two prime
// and a and b as the last two.
cout << "2 3 " << a << " " << b << endl;
}
// if it is even then 2 and 2 are first two
// of sequence
else {
/// calls the function to get the other
// two prime numbers considering first two
// primes as 2 and 2 (Note 2 + 2 = 4)
Num(n - 4, a, b);
// print 2 and 2 as the firsts two prime
// and a and b as the last two.
cout << "2 2 " << a << " " << b << endl;
}
}
// driver program to test the above function
int main()
{
int n = 28;
generate(n);
return 0;
}


JAVA

// Java program to express n as sum of
// 4 primes.
class GFG {
static int a = 0 , b = 0 ;
// function to check if a number
// is prime or not
static int isPrime( int x)
{
// does square root of the
// number
int s = ( int )Math.sqrt(x);
// traverse from 2 to sqrt(n)
for ( int i = 2 ; i <= s; i++)
// if any divisor found
// then non prime
if (x % i == 0 )
return 0 ;
// if no divisor is found
// then it is a prime
return 1 ;
}
static void Num( int x)
{
// iterates to check prime
// or not
for ( int i = 2 ; i <= x / 2 ; i++) {
// calls function to check
// if i and x-i is prime
// or not
if (isPrime(i) != 0 && isPrime(x - i) != 0 ) {
a = i;
b = x - i;
// if two prime numbers
// are found, then return
return ;
}
}
}
// function to generate 4 prime
// numbers adding upto n
static void generate( int n)
{
// if n<=7 then 4 numbers cannot
// sum to get that number
if (n <= 7 )
System.out.println( "Impossible"
+ " to form" );
// if it is not even then 2 and 3
// are first two of sequence
if (n % 2 != 0 ) {
// calls the function to get the
// other two prime numbers
// considering first two primes
// as 2 and 3 (Note 2 + 3 = 5)
Num(n - 5 );
// print 2 and 3 as the firsts
// two prime and a and b as the
// last two.
System.out.println( "2 3 " + a + " " + b);
}
// if it is even then 2 and 2 are
// first two of sequence
else {
/// calls the function to get the
// other two prime numbers
// considering first two primes as
// 2 and 2 (Note 2 + 2 = 4)
Num(n - 4 );
// print 2 and 2 as the firsts
// two prime and a and b as the
// last two.
System.out.println( "2 2 " + a + " " + b);
}
}
// Driver function to test the above
// function
public static void main(String[] args)
{
int n = 28 ;
generate(n);
}
}
// This code is contributed by Anant Agarwal.


Python3

# Python3 program to express
# n as sum of 4 primes.
import math;
# function to check if a
# number is prime or not
def isPrime(x):
# does square root
# of the number
s = int (math.sqrt(x))
# traverse from 2 to sqrt(n)
for i in range ( 2 ,s + 1 ):
# if any divisor found
# then non prime
if (x % i = = 0 ):
return 0
# if no divisor is found
# then it is a prime
return 1
def Num(x):
# iterates to check
# prime or not
ab = [ 0 ] * 2
for i in range ( 2 , int (x / 2 ) + 1 ):
# calls function to check
# if i and x-i is prime
# or not
if (isPrime(i) ! = 0 and isPrime(x - i) ! = 0 ):
ab[ 0 ] = i
ab[ 1 ] = x - i
# if two prime numbers
# are found, then return
return ab
# function to generate 4 prime
# numbers adding upto n
def generate(n):
# if n<=7 then 4 numbers cannot
# sum to get that number
if (n < = 7 ):
print ( "Impossible to form" )
# if it is not even then 2 and
# 3 are first two of sequence
if (n % 2 ! = 0 ):
# calls the function to get
# the other two prime numbers
# considering first two primes
# as 2 and 3 (Note 2 + 3 = 5)
ab = Num(n - 5 )
# print 2 and 3 as the firsts
# two prime and a and b as the
# last two.
print ( "2 3" ,ab[ 0 ],ab[ 1 ])
# if it is even then 2 and 2 are
# first two of sequence
else :
# calls the function to get
# the other two prime numbers
# considering first two primes
# as 2 and 2 (Note 2 + 2 = 4)
ab = Num(n - 4 )
# print 2 and 2 as the firsts
# two prime and a and b as the
# last two.
print ( "2 2" ,ab[ 0 ],ab[ 1 ])
# Driver Code
if __name__ = = '__main__' :
n = 28
generate(n)
# This code is contributed by mits.


C#

// C# program to express n as sum of
// 4 primes.
using System;
class GFG {
static int a = 0, b = 0;
// function to check if a number
// is prime or not
static int isPrime( int x)
{
// does square root of the
// number
int s = ( int )Math.Sqrt(x);
// traverse from 2 to sqrt(n)
for ( int i = 2; i <= s; i++)
// if any divisor found
// then non prime
if (x % i == 0)
return 0;
// if no divisor is found
// then it is a prime
return 1;
}
static void Num( int x)
{
// iterates to check prime
// or not
for ( int i = 2; i <= x / 2; i++)
{
// calls function to check
// if i and x-i is prime
// or not
if (isPrime(i) != 0 &&
isPrime(x - i) != 0)
{
a = i;
b = x - i;
// if two prime numbers
// are found, then return
return ;
}
}
}
// function to generate 4 prime
// numbers adding upto n
static void generate( int n)
{
// if n<=7 then 4 numbers cannot
// sum to get that number
if (n <= 7)
Console.Write( "Impossible"
+ " to form" );
// if it is not even then 2 and
// 3 are first two of sequence
if (n % 2 != 0) {
// calls the function to get
// the other two prime numbers
// considering first two primes
// as 2 and 3 (Note 2 + 3 = 5)
Num(n - 5);
// print 2 and 3 as the firsts
// two prime and a and b as the
// last two.
Console.Write( "2 3 " + a + " "
+ b);
}
// if it is even then 2 and 2 are
// first two of sequence
else {
/// calls the function to get
// the other two prime numbers
// considering first two primes
// as 2 and 2 (Note 2 + 2 = 4)
Num(n - 4);
// print 2 and 2 as the firsts
// two prime and a and b as the
// last two.
Console.Write( "2 2 " + a + " "
+ b);
}
}
// Driver function to test the above
// function
public static void Main()
{
int n = 28;
generate(n);
}
}
// This code is contributed by nitin mittal.


PHP

<?php
// PHP program to express
// n as sum of 4 primes.
$a = 0;
$b = 0;
// function to check if a
// number is prime or not
function isPrime( $x )
{
// does square root
// of the number
$s = (int)(sqrt( $x ));
// traverse from 2 to sqrt(n)
for ( $i = 2; $i <= $s ; $i ++)
// if any divisor found
// then non prime
if ( $x % $i == 0)
return 0;
// if no divisor is found
// then it is a prime
return 1;
}
function Num( $x )
{
global $a ;
global $b ;
// iterates to check
// prime or not
for ( $i = 2;
$i <= (int)( $x / 2); $i ++)
{
// calls function to check
// if i and x-i is prime
// or not
if (isPrime( $i ) != 0 &&
isPrime( $x - $i ) != 0)
{
$a = $i ;
$b = $x - $i ;
// if two prime numbers
// are found, then return
return ;
}
}
}
// function to generate 4 prime
// numbers adding upto n
function generate( $n )
{
global $a ;
global $b ;
// if n<=7 then 4 numbers cannot
// sum to get that number
if ( $n <= 7)
echo "Impossible to form" ;
// if it is not even then 2 and
// 3 are first two of sequence
if ( $n % 2 != 0)
{
// calls the function to get
// the other two prime numbers
// considering first two primes
// as 2 and 3 (Note 2 + 3 = 5)
Num( $n - 5);
// print 2 and 3 as the firsts
// two prime and a and b as the
// last two.
echo "2 3 $a $b" ;
}
// if it is even then 2 and 2 are
// first two of sequence
else
{
// calls the function to get
// the other two prime numbers
// considering first two primes
// as 2 and 2 (Note 2 + 2 = 4)
Num( $n - 4);
// print 2 and 2 as the firsts
// two prime and a and b as the
// last two.
echo "2 2 $a $b" ;
}
}
// Driver Code
$n = 28;
generate( $n );
// This code is contributed by mits.
?>


Javascript

<script>
// JavaScript program to express n as sum of
// 4 primes.
let a = 0, b = 0;
// function to check if a number
// is prime or not
function isPrime(x)
{
// does square root of the
// number
let s = Math.sqrt(x);
// traverse from 2 to sqrt(n)
for (let i = 2; i <= s; i++)
// if any divisor found
// then non prime
if (x % i == 0)
return 0;
// if no divisor is found
// then it is a prime
return 1;
}
function Num(x)
{
// iterates to check prime
// or not
for (let i = 2; i <= x / 2; i++) {
// calls function to check
// if i and x-i is prime
// or not
if (isPrime(i) != 0 && isPrime(x - i) != 0) {
a = i;
b = x - i;
// if two prime numbers
// are found, then return
return ;
}
}
}
// function to generate 4 prime
// numbers adding upto n
function generate(n)
{
// if n<=7 then 4 numbers cannot
// sum to get that number
if (n <= 7)
document.write( "Impossible"
+ " to form" );
// if it is not even then 2 and 3
// are first two of sequence
if (n % 2 != 0) {
// calls the function to get the
// other two prime numbers
// considering first two primes
// as 2 and 3 (Note 2 + 3 = 5)
Num(n - 5);
// print 2 and 3 as the firsts
// two prime and a and b as the
// last two.
document.write( "2 3 " + a + " " + b);
}
// if it is even then 2 and 2 are
// first two of sequence
else {
/// calls the function to get the
// other two prime numbers
// considering first two primes as
// 2 and 2 (Note 2 + 2 = 4)
Num(n - 4);
// print 2 and 2 as the firsts
// two prime and a and b as the
// last two.
document.write( "2 2 " + a + " " + b);
}
}
// Driver Code
let n = 28;
generate(n);
</script>


输出:

2 2 5 19

时间复杂性: O(n)sqrt(n)) 辅助空间: O(1)

本文由 拉贾·维克拉马蒂亚 如果你喜欢Geeksforgek,并且想贡献自己的力量,你也可以使用 写极客。组织 或者把你的文章寄去评论-team@geeksforgeeks.org.看到你的文章出现在Geeksforgeks主页上,并帮助其他极客。 如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写下评论。

© 版权声明
THE END
喜欢就支持一下吧
点赞14 分享