具有相同共同差异的序列称为 算术级数 .系列的第一项是 A. 两者的共同点是 D .这个系列看起来像 a、 a+d、a+2d、a+3d。 任务是求级数的和。 例如:
null
Input : a = 1 d = 2 n = 4Output : 161 + 3 + 5 + 7 = 16Input : a = 2.5 d = 1.5 n = 20Output : 335
A. 简单解决方案 求算术级数之和。
C++
// CPP Program to find the sum of arithmetic // series. #include<bits/stdc++.h> using namespace std; // Function to find sum of series. float sumOfAP( float a, float d, int n) { float sum = 0; for ( int i=0;i<n;i++) { sum = sum + a; a = a + d; } return sum; } // Driver function int main() { int n = 20; float a = 2.5, d = 1.5; cout<<sumOfAP(a, d, n); return 0; } |
JAVA
// JAVA Program to find the sum of // arithmetic series. class GFG{ // Function to find sum of series. static float sumOfAP( float a, float d, int n) { float sum = 0 ; for ( int i = 0 ; i < n; i++) { sum = sum + a; a = a + d; } return sum; } // Driver function public static void main(String args[]) { int n = 20 ; float a = 2 .5f, d = 1 .5f; System.out.println(sumOfAP(a, d, n)); } } /*This code is contributed by Nikita Tiwari.*/ |
python
# Python Program to find the sum of # arithmetic series. # Function to find sum of series. def sumOfAP( a, d,n) : sum = 0 i = 0 while i < n : sum = sum + a a = a + d i = i + 1 return sum # Driver function n = 20 a = 2.5 d = 1.5 print (sumOfAP(a, d, n)) # This code is contributed by Nikita Tiwari. |
C#
// C# Program to find the sum of // arithmetic series. using System; class GFG { // Function to find sum of series. static float sumOfAP( float a, float d, int n) { float sum = 0; for ( int i = 0; i < n; i++) { sum = sum + a; a = a + d; } return sum; } // Driver function public static void Main() { int n = 20; float a = 2.5f, d = 1.5f; Console.Write(sumOfAP(a, d, n)); } } // This code is contributed by parashar. |
PHP
<?php // PHP Program to find the sum // of arithmetic series. // Function to find sum of series. function sumOfAP( $a , $d , $n ) { $sum = 0; for ( $i = 0; $i < $n ; $i ++) { $sum = $sum + $a ; $a = $a + $d ; } return $sum ; } // Driver Code $n = 20; $a = 2.5; $d = 1.5; echo (sumOfAP( $a , $d , $n )); // This code is contributed by Ajit. ?> |
Javascript
<script> // Javascript Program to find the sum of arithmetic // series. // Function to find sum of series. function sumOfAP(a, d, n) { let sum = 0; for (let i=0;i<n;i++) { sum = sum + a; a = a + d; } return sum; } // Driver function let n = 20; let a = 2.5, d = 1.5; document.write(sumOfAP(a, d, n)); // This code is contributed by Mayank Tyagi </script> |
输出:
335
时间复杂度:O(n) 一 有效解决方案 求算术级数之和要用到下面的公式。
Sum of arithmetic series = ((n / 2) * (2 * a + (n - 1) * d)) Where a - First term d - Common difference n - No of terms
C++
// Efficient solution to find sum of arithmetic series. #include<bits/stdc++.h> using namespace std; float sumOfAP( float a, float d, float n) { float sum = (n / 2) * (2 * a + (n - 1) * d); return sum; } // Driver code int main() { float n = 20; float a = 2.5, d = 1.5; cout<<sumOfAP(a, d, n); return 0; } |
JAVA
// Java Efficient solution to find // sum of arithmetic series. class GFG { static float sumOfAP( float a, float d, float n) { float sum = (n / 2 ) * ( 2 * a + (n - 1 ) * d); return sum; } // Driver code public static void main (String[] args) { float n = 20 ; float a = 2 .5f, d = 1 .5f; System.out.print(sumOfAP(a, d, n)); } } // This code is contributed by Anant Agarwal. |
Python3
# Python3 Efficient # solution to find sum # of arithmetic series. def sumOfAP(a, d, n): sum = (n / 2 ) * ( 2 * a + (n - 1 ) * d) return sum # Driver code n = 20 a = 2.5 d = 1.5 print (sumOfAP(a, d, n)) # This code is # contributed by sunnysingh |
C#
// C# efficient solution to find // sum of arithmetic series. using System; class GFG { static float sumOfAP( float a, float d, float n) { float sum = (n / 2) * (2 * a + (n - 1) * d); return sum; } // Driver code static public void Main () { float n = 20; float a = 2.5f, d = 1.5f; Console.WriteLine(sumOfAP(a, d, n)); } } // This code is contributed by Ajit. |
PHP
<?php // Efficient PHP code to find sum // of arithmetic series. // Function to find sum of series. function sumOfAP( $a , $d , $n ) { $sum = ( $n / 2) * (2 * $a + ( $n - 1) * $d ); return $sum ; } // Driver code $n = 20; $a = 2.5; $d = 1.5; echo (sumOfAP( $a , $d , $n )); // This code is contributed by Ajit. ?> |
Javascript
// Efficient solution to find sum of arithmetic series. function sumOfAP(a, d, n) { let sum = (n / 2) * (2 * a + (n - 1) * d); return sum; } // Driver code let n = 20; let a = 2.5, d = 1.5; document.write(sumOfAP(a, d, n)); // This code is contributed by Ashok |
输出
335
时间复杂度:O(1) 这个公式是如何工作的? 我们可以用数学归纳法来证明这个公式。我们可以很容易地看到,这个公式适用于n=1和n=2。对于n=k-1,这是真的。
Let the formula be true for n = k-1.Sum of first k - 1 elements of geometric series is = (((k-1))/ 2) * (2 * a + (k - 2) * d))We know k-th term of arithmetic series is = a + (k - 1)*dSum of first k elements = = Sum of (k-1) numbers + k-th element = (((k-1)/2)*(2*a + (k-2)*d)) + (a + (k-1)*d) = [((k-1)(2a + (k-2)d) + (2a + 2kd - 2d)]/2 = ((k / 2) * (2 * a + (k - 1) * d))
本文由 达曼德拉·库马尔 .如果你喜欢GeekSforgek,并想贡献自己的力量,你也可以使用 写极客。组织 或者把你的文章寄去评论-team@geeksforgeeks.org.看到你的文章出现在Geeksforgeks主页上,并帮助其他极客。 如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写下评论。
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END