打印所有前缀中1大于0的N位二进制数

给定一个正整数n,打印所有n位二进制数,对于该数字的任何前缀,其1大于0。

null

例如:

Input : n = 2Output : 11 10Input : n = 4Output : 1111 1110 1101 1100 1011 1010

A. 易于理解的 但不是有效的解决方案是生成所有N位二进制数并打印满足条件的数字。这个解决方案的时间复杂度是指数的。

有效解决方案 只生成满足给定条件的N位数字。我们使用递归。在递归过程中的每一点上,我们将0和1附加到部分形成的数字上,并用少一个数字进行递归。

C++

// C++ program to print all N-bit binary
#include <bits/stdc++.h>
using namespace std;
/* function to generate n  digit numbers*/
void printRec(string number, int extraOnes,
int remainingPlaces)
{
/* if number generated */
if (0 == remainingPlaces) {
cout << number << " " ;
return ;
}
/* Append 1 at the current number and reduce
the remaining places by one */
printRec(number + "1" , extraOnes + 1,
remainingPlaces - 1);
/* If more ones than zeros, append 0 to the
current number and reduce the remaining
places by one*/
if (0 < extraOnes)
printRec(number + "0" , extraOnes - 1,
remainingPlaces - 1);
}
void printNums( int n)
{
string str = "" ;
printRec(str, 0, n);
}
// Driver code
int main()
{
int n = 4;
// Function call
printNums(n);
return 0;
}


JAVA

// Java program to print all N-bit binary
import java.io.*;
class GFG {
// function to generate n digit numbers
static void printRec(String number,
int extraOnes,
int remainingPlaces)
{
// if number generated
if ( 0 == remainingPlaces) {
System.out.print(number + " " );
return ;
}
// Append 1 at the current number and
// reduce the remaining places by one
printRec(number + "1" , extraOnes + 1 ,
remainingPlaces - 1 );
// If more ones than zeros, append 0 to the
// current number and reduce the remaining
// places by one
if ( 0 < extraOnes)
printRec(number + "0" , extraOnes - 1 ,
remainingPlaces - 1 );
}
static void printNums( int n)
{
String str = "" ;
printRec(str, 0 , n);
}
// Driver code
public static void main(String[] args)
{
int n = 4 ;
// Function call
printNums(n);
}
}
// This code is contributed by vt_m


Python3

# Python 3 program to print all N-bit binary
# function to generate n digit numbers
def printRec(number, extraOnes, remainingPlaces):
# if number generated
if ( 0 = = remainingPlaces):
print (number, end = " " )
return
# Append 1 at the current number and
# reduce the remaining places by one
printRec(number + "1" , extraOnes + 1 ,
remainingPlaces - 1 )
# If more ones than zeros, append 0 to
# the current number and reduce the
# remaining places by one
if ( 0 < extraOnes):
printRec(number + "0" , extraOnes - 1 ,
remainingPlaces - 1 )
def printNums(n):
str = ""
printRec( str , 0 , n)
# Driver Code
if __name__ = = '__main__' :
n = 4
# Function call
printNums(n)
# This code is contributed by
# Surendra_Gangwar


C#

// C# program to print all N-bit binary
using System;
class GFG {
// function to generate n digit numbers
static void printRec(String number,
int extraOnes,
int remainingPlaces)
{
// if number generated
if (0 == remainingPlaces)
{
Console.Write(number + " " );
return ;
}
// Append 1 at the current number and
// reduce the remaining places by one
printRec(number + "1" , extraOnes + 1,
remainingPlaces - 1);
// If more ones than zeros, append
// 0 to the current number and
// reduce the remaining places
// by one
if (0 < extraOnes)
printRec(number + "0" , extraOnes - 1,
remainingPlaces - 1);
}
static void printNums( int n)
{
String str = "" ;
printRec(str, 0, n);
}
// Driver code
public static void Main()
{
int n = 4;
// Function call
printNums(n);
}
}
// This code is contributed by Nitin Mittal.


PHP

<?php
// PHP program to print all N-bit binary
// function to generate n digit numbers
function printRec( $number , $extraOnes ,
$remainingPlaces )
{
// if number generated
if (0 == $remainingPlaces )
{
echo ( $number . " " );
return ;
}
// Append 1 at the current number and
// reduce the remaining places by one
printRec( $number . "1" , $extraOnes + 1,
$remainingPlaces - 1);
// If more ones than zeros, append 0 to the
// current number and reduce the remaining
// places by one
if (0 < $extraOnes )
printRec( $number . "0" , $extraOnes - 1,
$remainingPlaces - 1);
}
function printNums( $n )
{
$str = "" ;
printRec( $str , 0, $n );
}
// Driver Code
$n = 4;
// Function call
printNums( $n );
// This code is contributed by Mukul Singh.


Javascript

<script>
// Javascript program to print all N-bit binary
// function to generate n digit numbers
function printRec(number, extraOnes, remainingPlaces)
{
// if number generated
if (0 == remainingPlaces) {
document.write(number + " " );
return ;
}
// Append 1 at the current number and
// reduce the remaining places by one
printRec(number + "1" , extraOnes + 1,
remainingPlaces - 1);
// If more ones than zeros, append 0 to the
// current number and reduce the remaining
// places by one
if (0 < extraOnes)
printRec(number + "0" , extraOnes - 1,
remainingPlaces - 1);
}
function printNums(n)
{
let str = "" ;
printRec(str, 0, n);
}
// driver function
let n = 4;
// Function call
printNums(n);
</script>


输出

1111 1110 1101 1100 1011 1010 

也存在一种非递归解决方案,其思想是直接生成2^N到2^(N-1)范围内的数字,然后只需要满足以下条件的数字:

C++

// C++ program to print all N-bit binary
#include <bits/stdc++.h>
#include <iostream>
using namespace std;
// Function to get the binary representation
// of the number N
string getBinaryRep( int N, int num_of_bits)
{
string r = "" ;
num_of_bits--;
// loop for each bit
while (num_of_bits >= 0)
{
if (N & (1 << num_of_bits))
r.append( "1" );
else
r.append( "0" );
num_of_bits--;
}
return r;
}
vector<string> NBitBinary( int N)
{
vector<string> r;
int first = 1 << (N - 1);
int last = first * 2;
// generate numbers in the range of (2^N)-1 to 2^(N-1)
// inclusive
for ( int i = last - 1; i >= first; --i)
{
int zero_cnt = 0;
int one_cnt = 0;
int t = i;
int num_of_bits = 0;
// longest prefix check
while (t)
{
if (t & 1)
one_cnt++;
else
zero_cnt++;
num_of_bits++;
t = t >> 1;
}
// if counts of 1 is greater than
// counts of zero
if (one_cnt >= zero_cnt)
{
// do sub-prefixes check
bool all_prefix_match = true ;
int msk = (1 << num_of_bits) - 2;
int prefix_shift = 1;
while (msk)
{
int prefix = (msk & i) >> prefix_shift;
int prefix_one_cnt = 0;
int prefix_zero_cnt = 0;
while (prefix)
{
if (prefix & 1)
prefix_one_cnt++;
else
prefix_zero_cnt++;
prefix = prefix >> 1;
}
if (prefix_zero_cnt > prefix_one_cnt)
{
all_prefix_match = false ;
break ;
}
prefix_shift++;
msk = msk & (msk << 1);
}
if (all_prefix_match)
{
r.push_back(getBinaryRep(i, num_of_bits));
}
}
}
return r;
}
// Driver code
int main()
{
int n = 4;
// Function call
vector<string> results = NBitBinary(n);
for ( int i = 0; i < results.size(); ++i)
cout << results[i] << " " ;
cout << endl;
return 0;
}


JAVA

// Java program to print all N-bit binary
import java.io.*;
import java.util.*;
class GFG
{
// Function to get the binary representation
// of the number N
static String getBinaryRep( int N, int num_of_bits)
{
String r = "" ;
num_of_bits--;
// loop for each bit
while (num_of_bits >= 0 )
{
if ((N & ( 1 << num_of_bits))!= 0 )
r += "1" ;
else
r += "0" ;
num_of_bits--;
}
return r;
}
static ArrayList<String> NBitBinary( int N)
{
ArrayList<String> r = new ArrayList<String>();
int first = 1 << (N - 1 );
int last = first * 2 ;
// generate numbers in the range of (2^N)-1 to 2^(N-1)
// inclusive
for ( int i = last - 1 ; i >= first; --i)
{
int zero_cnt = 0 ;
int one_cnt = 0 ;
int t = i;
int num_of_bits = 0 ;
// longest prefix check
while (t > 0 )
{
if ((t & 1 ) != 0 )
one_cnt++;
else
zero_cnt++;
num_of_bits++;
t = t >> 1 ;
}
// if counts of 1 is greater than
// counts of zero
if (one_cnt >= zero_cnt)
{
// do sub-prefixes check
boolean all_prefix_match = true ;
int msk = ( 1 << num_of_bits) - 2 ;
int prefix_shift = 1 ;
while (msk > 0 )
{
int prefix = (msk & i) >> prefix_shift;
int prefix_one_cnt = 0 ;
int prefix_zero_cnt = 0 ;
while (prefix > 0 )
{
if ((prefix & 1 )!= 0 )
prefix_one_cnt++;
else
prefix_zero_cnt++;
prefix = prefix >> 1 ;
}
if (prefix_zero_cnt > prefix_one_cnt)
{
all_prefix_match = false ;
break ;
}
prefix_shift++;
msk = msk & (msk << 1 );
}
if (all_prefix_match)
{
r.add(getBinaryRep(i, num_of_bits));
}
}
}
return r;
}
// Driver code
public static void main (String[] args)
{
int n = 4 ;
// Function call
ArrayList<String> results = NBitBinary(n);
for ( int i = 0 ; i < results.size(); ++i)
System.out.print(results.get(i)+ " " );
System.out.println();
}
}
// This code is contributed by avanitrachhadiya2155


Python3

# Python3 program to print
# all N-bit binary
# Function to get the binary
# representation of the number N
def getBinaryRep(N, num_of_bits):
r = "";
num_of_bits - = 1
# loop for each bit
while (num_of_bits > = 0 ):
if (N & ( 1 << num_of_bits)):
r + = ( "1" );
else :
r + = ( "0" );
num_of_bits - = 1
return r;
def NBitBinary(N):
r = []
first = 1 << (N - 1 );
last = first * 2 ;
# generate numbers in the range
# of (2^N)-1 to 2^(N-1) inclusive
for i in range (last - 1 ,
first - 1 , - 1 ):
zero_cnt = 0 ;
one_cnt = 0 ;
t = i;
num_of_bits = 0 ;
# longest prefix check
while (t):
if (t & 1 ):
one_cnt + = 1
else :
zero_cnt + = 1
num_of_bits + = 1
t = t >> 1 ;
# if counts of 1 is greater
# than counts of zero
if (one_cnt > = zero_cnt):
# do sub-prefixes check
all_prefix_match = True ;
msk = ( 1 << num_of_bits) - 2 ;
prefix_shift = 1 ;
while (msk):
prefix = ((msk & i) >>
prefix_shift);
prefix_one_cnt = 0 ;
prefix_zero_cnt = 0 ;
while (prefix):
if (prefix & 1 ):
prefix_one_cnt + = 1
else :
prefix_zero_cnt + = 1
prefix = prefix >> 1 ;
if (prefix_zero_cnt >
prefix_one_cnt):
all_prefix_match = False ;
break ;
prefix_shift + = 1
msk = msk & (msk << 1 );
if (all_prefix_match):
r.append(getBinaryRep(i,
num_of_bits));
return r
# Driver code
if __name__ = = "__main__" :
n = 4 ;
# Function call
results = NBitBinary(n);
for i in range ( len (results)):
print (results[i],
end = " " )
print ()
# This code is contributed by Chitranayal


C#

// C# program to print all N-bit binary
using System;
using System.Collections.Generic;
class GFG{
// Function to get the binary representation
// of the number N
static string getBinaryRep( int N, int num_of_bits)
{
string r = "" ;
num_of_bits--;
// loop for each bit
while (num_of_bits >= 0)
{
if ((N & (1 << num_of_bits)) != 0)
r += "1" ;
else
r += "0" ;
num_of_bits--;
}
return r;
}
static List< string > NBitBinary( int N)
{
List< string > r = new List< string >();
int first = 1 << (N - 1);
int last = first * 2;
// Generate numbers in the range of (2^N)-1 to 2^(N-1)
// inclusive
for ( int i = last - 1; i >= first; --i)
{
int zero_cnt = 0;
int one_cnt = 0;
int t = i;
int num_of_bits = 0;
// longest prefix check
while (t > 0)
{
if ((t & 1) != 0)
one_cnt++;
else
zero_cnt++;
num_of_bits++;
t = t >> 1;
}
// If counts of 1 is greater than
// counts of zero
if (one_cnt >= zero_cnt)
{
// Do sub-prefixes check
bool all_prefix_match = true ;
int msk = (1 << num_of_bits) - 2;
int prefix_shift = 1;
while (msk > 0)
{
int prefix = (msk & i) >> prefix_shift;
int prefix_one_cnt = 0;
int prefix_zero_cnt = 0;
while (prefix > 0)
{
if ((prefix & 1)!=0)
prefix_one_cnt++;
else
prefix_zero_cnt++;
prefix = prefix >> 1;
}
if (prefix_zero_cnt > prefix_one_cnt)
{
all_prefix_match = false ;
break ;
}
prefix_shift++;
msk = msk & (msk << 1);
}
if (all_prefix_match)
{
r.Add(getBinaryRep(i, num_of_bits));
}
}
}
return r;
}
// Driver code
static public void Main()
{
int n = 4;
// Function call
List< string > results = NBitBinary(n);
for ( int i = 0; i < results.Count; ++i)
Console.Write(results[i] + " " );
Console.WriteLine();
}
}
// This code is contributed by rag2127


Javascript

<script>
// Javascript program to print all N-bit binary
// Function to get the binary representation
// of the number N
function getBinaryRep(N, num_of_bits)
{
let r = "" ;
num_of_bits--;
// loop for each bit
while (num_of_bits >= 0)
{
if ((N & (1 << num_of_bits))!=0)
r += "1" ;
else
r += "0" ;
num_of_bits--;
}
return r;
}
function NBitBinary(N)
{
let r = [];
let first = 1 << (N - 1);
let last = first * 2;
// generate numbers in the range of (2^N)-1 to 2^(N-1)
// inclusive
for (let i = last - 1; i >= first; --i)
{
let zero_cnt = 0;
let one_cnt = 0;
let t = i;
let num_of_bits = 0;
// longest prefix check
while (t > 0)
{
if ((t & 1) != 0)
one_cnt++;
else
zero_cnt++;
num_of_bits++;
t = t >> 1;
}
// if counts of 1 is greater than
// counts of zero
if (one_cnt >= zero_cnt)
{
// do sub-prefixes check
let all_prefix_match = true ;
let msk = (1 << num_of_bits) - 2;
let prefix_shift = 1;
while (msk > 0)
{
let prefix = (msk & i) >> prefix_shift;
let prefix_one_cnt = 0;
let prefix_zero_cnt = 0;
while (prefix > 0)
{
if ((prefix & 1)!=0)
prefix_one_cnt++;
else
prefix_zero_cnt++;
prefix = prefix >> 1;
}
if (prefix_zero_cnt > prefix_one_cnt)
{
all_prefix_match = false ;
break ;
}
prefix_shift++;
msk = msk & (msk << 1);
}
if (all_prefix_match)
{
r.push(getBinaryRep(i, num_of_bits));
}
}
}
return r;
}
let n = 4;
// Function call
let results = NBitBinary(n);
for (let i = 0; i < results.length; ++i)
document.write(results[i]+ " " );
document.write( "</br>" );
// This code is contributed by mukesh07.
</script>


输出

1111 1110 1101 1100 1011 1010 

本文由 普拉纳夫 .如果你喜欢GeekSforgek,并想贡献自己的力量,你也可以使用 写极客。组织 或者把你的文章寄去评论-team@geeksforgeeks.org.看到你的文章出现在Geeksforgeks主页上,并帮助其他极客。 如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写下评论。

© 版权声明
THE END
喜欢就支持一下吧
点赞6 分享