两条直线的交点程序

给定与AB线对应的A点和B点,以及与PQ线对应的P点和Q点,求出这些线的交点。这些点在二维平面上以其X和Y坐标给出。

null

例如:

Input : A = (1, 1), B = (4, 4)
        C = (1, 8), D = (2, 4)
Output : The intersection of the given lines 
         AB and CD is: (2.4, 2.4)

Input : A = (0, 1), B = (0, 4)
        C = (1, 8), D = (1, 4)
Output : The given lines AB and CD are parallel.

首先,假设我们有两点(x 1. Y 1. )和(x) 2. Y 2. )现在,我们找到由这些点构成的直线方程。

让给定的行为:

  1. A. 1. x+b 1. y=c 1.
  2. A. 2. x+b 2. y=c 2.

我们现在必须解这两个方程来找到交点。要解决这个问题,我们乘以1。b 2. b写的2 1. 这给了我们, A. 1. B 2. x+b 1. B 2. y=c 1. B 2. A. 2. B 1. x+b 2. B 1. y=c 2. B 1.

减去这些, (a) 1. B 2. –a 2. B 1. )x=c 1. B 2. –c 2. B 1.

这给了我们x的值。同样,我们可以找到y的值。(x,y)给了我们交点。

注: 这给出了两条直线的交点,但如果我们得到的是线段而不是直线,我们还必须重新检查这样计算的点是否实际位于两条线段上。 如果线段由点(x)指定 1. Y 1. )和(x) 2. Y 2. ),然后要检查(x,y)是否在线段上,我们只需要检查一下

  • 最小(x) 1. 十、 2. )<=x<=max(x 1. 十、 2. )
  • 明(y) 1. Y 2. )<=y<=最大值(y 1. Y 2. )

上述实现的伪代码:

determinant = a1 b2 - a2 b1
if (determinant == 0)
{
    // Lines are parallel
}
else
{
    x = (c1b2 - c2b1)/determinant
    y = (a1c2 - a2c1)/determinant
}

首先直接求出斜率,然后求出直线的截距,就可以得到它们。

C++

// C++ Implementation. To find the point of
// intersection of two lines
#include <bits/stdc++.h>
using namespace std;
// This pair is used to store the X and Y
// coordinates of a point respectively
#define pdd pair<double, double>
// Function used to display X and Y coordinates
// of a point
void displayPoint(pdd P)
{
cout << "(" << P.first << ", " << P.second
<< ")" << endl;
}
pdd lineLineIntersection(pdd A, pdd B, pdd C, pdd D)
{
// Line AB represented as a1x + b1y = c1
double a1 = B.second - A.second;
double b1 = A.first - B.first;
double c1 = a1*(A.first) + b1*(A.second);
// Line CD represented as a2x + b2y = c2
double a2 = D.second - C.second;
double b2 = C.first - D.first;
double c2 = a2*(C.first)+ b2*(C.second);
double determinant = a1*b2 - a2*b1;
if (determinant == 0)
{
// The lines are parallel. This is simplified
// by returning a pair of FLT_MAX
return make_pair(FLT_MAX, FLT_MAX);
}
else
{
double x = (b2*c1 - b1*c2)/determinant;
double y = (a1*c2 - a2*c1)/determinant;
return make_pair(x, y);
}
}
// Driver code
int main()
{
pdd A = make_pair(1, 1);
pdd B = make_pair(4, 4);
pdd C = make_pair(1, 8);
pdd D = make_pair(2, 4);
pdd intersection = lineLineIntersection(A, B, C, D);
if (intersection.first == FLT_MAX &&
intersection.second==FLT_MAX)
{
cout << "The given lines AB and CD are parallel." ;
}
else
{
// NOTE: Further check can be applied in case
// of line segments. Here, we have considered AB
// and CD as lines
cout << "The intersection of the given lines AB "
"and CD is: " ;
displayPoint(intersection);
}
return 0;
}


JAVA

// Java Implementation. To find the point of
// intersection of two lines
// Class used to  used to store the X and Y
// coordinates of a point respectively
class Point
{
double x,y;
public Point( double x, double y)
{
this .x = x;
this .y = y;
}
// Method used to display X and Y coordinates
// of a point
static void displayPoint(Point p)
{
System.out.println( "(" + p.x + ", " + p.y + ")" );
}
}
class Test
{
static Point lineLineIntersection(Point A, Point B, Point C, Point D)
{
// Line AB represented as a1x + b1y = c1
double a1 = B.y - A.y;
double b1 = A.x - B.x;
double c1 = a1*(A.x) + b1*(A.y);
// Line CD represented as a2x + b2y = c2
double a2 = D.y - C.y;
double b2 = C.x - D.x;
double c2 = a2*(C.x)+ b2*(C.y);
double determinant = a1*b2 - a2*b1;
if (determinant == 0 )
{
// The lines are parallel. This is simplified
// by returning a pair of FLT_MAX
return new Point(Double.MAX_VALUE, Double.MAX_VALUE);
}
else
{
double x = (b2*c1 - b1*c2)/determinant;
double y = (a1*c2 - a2*c1)/determinant;
return new Point(x, y);
}
}
// Driver method
public static void main(String args[])
{
Point A = new Point( 1 , 1 );
Point B = new Point( 4 , 4 );
Point C = new Point( 1 , 8 );
Point D = new Point( 2 , 4 );
Point intersection = lineLineIntersection(A, B, C, D);
if (intersection.x == Double.MAX_VALUE &&
intersection.y == Double.MAX_VALUE)
{
System.out.println( "The given lines AB and CD are parallel." );
}
else
{
// NOTE: Further check can be applied in case
// of line segments. Here, we have considered AB
// and CD as lines
System.out.print( "The intersection of the given lines AB " +
"and CD is: " );
Point.displayPoint(intersection);
}
}
}


C#

using System;
// C# Implementation. To find the point of
// intersection of two lines
// Class used to  used to store the X and Y
// coordinates of a point respectively
public class Point
{
public double x, y;
public Point( double x, double y)
{
this .x = x;
this .y = y;
}
// Method used to display X and Y coordinates
// of a point
public static void displayPoint(Point p)
{
Console.WriteLine( "(" + p.x + ", " + p.y + ")" );
}
}
public class Test
{
public static Point lineLineIntersection(Point A, Point B, Point C, Point D)
{
// Line AB represented as a1x + b1y = c1
double a1 = B.y - A.y;
double b1 = A.x - B.x;
double c1 = a1 * (A.x) + b1 * (A.y);
// Line CD represented as a2x + b2y = c2
double a2 = D.y - C.y;
double b2 = C.x - D.x;
double c2 = a2 * (C.x) + b2 * (C.y);
double determinant = a1 * b2 - a2 * b1;
if (determinant == 0)
{
// The lines are parallel. This is simplified
// by returning a pair of FLT_MAX
return new Point( double .MaxValue, double .MaxValue);
}
else
{
double x = (b2 * c1 - b1 * c2) / determinant;
double y = (a1 * c2 - a2 * c1) / determinant;
return new Point(x, y);
}
}
// Driver method
public static void Main( string [] args)
{
Point A = new Point(1, 1);
Point B = new Point(4, 4);
Point C = new Point(1, 8);
Point D = new Point(2, 4);
Point intersection = lineLineIntersection(A, B, C, D);
if (intersection.x == double .MaxValue && intersection.y == double .MaxValue)
{
Console.WriteLine( "The given lines AB and CD are parallel." );
}
else
{
// NOTE: Further check can be applied in case
// of line segments. Here, we have considered AB
// and CD as lines
Console.Write( "The intersection of the given lines AB " + "and CD is: " );
Point.displayPoint(intersection);
}
}
}
// This code is contributed by Shrikant13


输出:

The intersection of the given lines AB and 
CD is: (2.4, 2.4)

本文由 安雅·金达尔 .如果你喜欢GeekSforgek,并想贡献自己的力量,你也可以使用 贡献极客。组织 或者把你的文章寄到contribute@geeksforgeeks.org.看到你的文章出现在Geeksforgeks主页上,并帮助其他极客。

如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写下评论。

© 版权声明
THE END
喜欢就支持一下吧
点赞9 分享