在二维数组中查找峰值元素

如果元素大于或等于其四个相邻元素(左、右、上和下),则该元素为峰值元素。例如,A[i][j]的邻居是A[i-1][j]、A[i+1][j]、A[i][j-1]和A[i][j+1]。对于角元素,缺少的邻域被认为是负无穷大值。 例如:

null
Input : 10 20 15        21 30 14        7  16 32 Output : 3030 is a peak element because all its neighbors are smaller or equal to it. 32 can also be picked as a peak.Input : 10 7        11 17Output : 17

以下是关于这个问题的一些事实: 1:对角线邻接不被视为邻接。 2:峰值元素不一定是最大元素。 3:可以存在多个这样的元素。 4:总是有一个峰值元素。通过用笔和纸创建一些矩阵,我们可以看到这个特性。 方法1:(暴力) 遍历矩阵的所有元素,并检查它是否大于/等于其所有邻居。如果是,则返回元素。 时间复杂度:O(行*列) 辅助空间:O(1) 方法2:(高效) 这个问题主要是 在1D数组中查找峰值元素 .我们在此应用类似的基于二进制搜索的解决方案。

  1. 考虑中间柱并在其中找到最大元素。
  2. 让中间列的索引为“mid”,中间列中最大元素的值为“max”,最大元素位于“mat[max_index][mid]”。
  3. 如果max>=A[index][mid-1]&max>=A[index][pick+1],max是峰值,则返回max。
  4. 如果max
  5. 如果max

下面是上述算法的实现:

C++

// Finding peak element in a 2D Array.
#include <bits/stdc++.h>
using namespace std;
const int MAX = 100;
// Function to find the maximum in column 'mid'
// 'rows' is number of rows.
int findMax( int arr[][MAX], int rows, int mid, int & max)
{
int max_index = 0;
for ( int i = 0; i < rows; i++) {
if (max < arr[i][mid]) {
// Saving global maximum and its index
// to check its neighbours
max = arr[i][mid];
max_index = i;
}
}
return max_index;
}
// Function to find a peak element
int findPeakRec( int arr[][MAX], int rows, int columns,
int mid)
{
// Evaluating maximum of mid column. Note max is
// passed by reference.
int max = 0;
int max_index = findMax(arr, rows, mid, max);
// If we are on the first or last column,
// max is a peak
if (mid == 0 || mid == columns - 1)
return max;
// If mid column maximum is also peak
if (max >= arr[max_index][mid - 1] && max >= arr[max_index][mid + 1])
return max;
// If max is less than its left
if (max < arr[max_index][mid - 1])
return findPeakRec(arr, rows, columns, mid - ceil (( double )mid / 2));
// If max is less than its left
// if (max < arr[max_index][mid+1])
return findPeakRec(arr, rows, columns, mid + ceil (( double )mid / 2));
}
// A wrapper over findPeakRec()
int findPeak( int arr[][MAX], int rows, int columns)
{
return findPeakRec(arr, rows, columns, columns / 2);
}
// Driver Code
int main()
{
int arr[][MAX] = { { 10, 8, 10, 10 },
{ 14, 13, 12, 11 },
{ 15, 9, 11, 21 },
{ 16, 17, 19, 20 } };
// Number of Columns
int rows = 4, columns = 4;
cout << findPeak(arr, rows, columns);
return 0;
}


JAVA

// Finding peak element in a 2D Array.
class GFG
{
static int MAX = 100 ;
// Function to find the maximum in column
// 'mid', 'rows' is number of rows.
static int findMax( int [][] arr, int rows,
int mid, int max)
{
int max_index = 0 ;
for ( int i = 0 ; i < rows; i++)
{
if (max < arr[i][mid])
{
// Saving global maximum and its index
// to check its neighbours
max = arr[i][mid];
max_index = i;
}
}
return max_index;
}
// Function to change the value of [max]
static int Max( int [][] arr, int rows,
int mid, int max)
{
for ( int i = 0 ; i < rows; i++)
{
if (max < arr[i][mid])
{
// Saving global maximum and its index
// to check its neighbours
max = arr[i][mid];
}
}
return max;
}
// Function to find a peak element
static int findPeakRec( int [][] arr, int rows,
int columns, int mid)
{
// Evaluating maximum of mid column.
// Note max is passed by reference.
int max = 0 ;
int max_index = findMax(arr, rows, mid, max);
max = Max(arr, rows, mid, max);
// If we are on the first or last column,
// max is a peak
if (mid == 0 || mid == columns - 1 )
return max;
// If mid column maximum is also peak
if (max >= arr[max_index][mid - 1 ] &&
max >= arr[max_index][mid + 1 ])
return max;
// If max is less than its left
if (max < arr[max_index][mid - 1 ])
return findPeakRec(arr, rows, columns,
( int )(mid - Math.ceil(( double ) mid / 2 )));
// If max is less than its left
// if (max < arr[max_index][mid+1])
return findPeakRec(arr, rows, columns,
( int )(mid + Math.ceil(( double ) mid / 2 )));
}
// A wrapper over findPeakRec()
static int findPeak( int [][] arr, int rows, int columns)
{
return findPeakRec(arr, rows, columns, columns / 2 );
}
// Driver Code
public static void main(String[] args)
{
int [][] arr = {{ 10 , 8 , 10 , 10 },
{ 14 , 13 , 12 , 11 },
{ 15 , 9 , 11 , 21 },
{ 16 , 17 , 19 , 20 }};
// Number of Columns
int rows = 4 , columns = 4 ;
System.out.println(findPeak(arr, rows, columns));
}
}
// This code is contributed by
// sanjeev2552


Python3

# Finding peak element in a 2D Array.
MAX = 100
from math import ceil
# Function to find the maximum in column 'mid'
# 'rows' is number of rows.
def findMax(arr, rows, mid, max ):
max_index = 0
for i in range (rows):
if ( max < arr[i][mid]):
# Saving global maximum and its index
# to check its neighbours
max = arr[i][mid]
max_index = i
#print(max_index)
return max ,max_index
# Function to find a peak element
def findPeakRec(arr, rows, columns,mid):
# Evaluating maximum of mid column.
# Note max is passed by reference.
max = 0
max , max_index = findMax(arr, rows, mid, max )
# If we are on the first or last column,
# max is a peak
if (mid = = 0 or mid = = columns - 1 ):
return max
# If mid column maximum is also peak
if ( max > = arr[max_index][mid - 1 ] and
max > = arr[max_index][mid + 1 ]):
return max
# If max is less than its left
if ( max < arr[max_index][mid - 1 ]):
return findPeakRec(arr, rows, columns,
mid - ceil(mid / 2.0 ))
# If max is less than its left
# if (max < arr[max_index][mid+1])
return findPeakRec(arr, rows, columns,
mid + ceil(mid / 2.0 ))
# A wrapper over findPeakRec()
def findPeak(arr, rows, columns):
return findPeakRec(arr, rows,
columns, columns / / 2 )
# Driver Code
arr = [ [ 10 , 8 , 10 , 10 ],
[ 14 , 13 , 12 , 11 ],
[ 15 , 9 , 11 , 21 ],
[ 16 , 17 , 19 , 20 ] ]
# Number of Columns
rows = 4
columns = 4
print (findPeak(arr, rows, columns))
# This code is contributed by Mohit Kumar


C#

// Finding peak element in a 2D Array.
using System;
class GFG
{
// Function to find the maximum in column
// 'mid', 'rows' is number of rows.
static int findMax( int [,] arr, int rows,
int mid, int max)
{
int max_index = 0;
for ( int i = 0; i < rows; i++)
{
if (max < arr[i,mid])
{
// Saving global maximum and its
// index to check its neighbours
max = arr[i,mid];
max_index = i;
}
}
return max_index;
}
// Function to change the value of [max]
static int Max( int [,] arr, int rows,
int mid, int max)
{
for ( int i = 0; i < rows; i++)
{
if (max < arr[i, mid])
{
// Saving global maximum and its
// index to check its neighbours
max = arr[i, mid];
}
}
return max;
}
// Function to find a peak element
static int findPeakRec( int [,] arr, int rows,
int columns, int mid)
{
// Evaluating maximum of mid column.
// Note max is passed by reference.
int max = 0;
int max_index = findMax(arr, rows, mid, max);
max = Max(arr, rows, mid, max);
// If we are on the first or last column,
// max is a peak
if (mid == 0 || mid == columns - 1)
return max;
// If mid column maximum is also peak
if (max >= arr[max_index, mid - 1] &&
max >= arr[max_index, mid + 1])
return max;
// If max is less than its left
if (max < arr[max_index,mid - 1])
return findPeakRec(arr, rows, columns,
( int )(mid - Math.Ceiling(( double ) mid / 2)));
// If max is less than its left
// if (max < arr[max_index][mid+1])
return findPeakRec(arr, rows, columns,
( int )(mid + Math.Ceiling(( double ) mid / 2)));
}
// A wrapper over findPeakRec()
static int findPeak( int [,] arr,
int rows, int columns)
{
return findPeakRec(arr, rows, columns,
columns / 2);
}
// Driver Code
static public void Main ()
{
int [,] arr = {{ 10, 8, 10, 10 },
{ 14, 13, 12, 11 },
{ 15, 9, 11, 21 },
{ 16, 17, 19, 20 }};
// Number of Columns
int rows = 4, columns = 4;
Console.Write(findPeak(arr, rows, columns));
}
}
// This code is contributed by ajit.


Javascript

<script>
// Finding peak element in a 2D Array.
let MAX = 100;
// Function to find the maximum in column
// 'mid', 'rows' is number of rows.
function findMax(arr, rows, mid, max)
{
let max_index = 0;
for (let i = 0; i < rows; i++)
{
if (max < arr[i][mid])
{
// Saving global maximum and its index
// to check its neighbours
max = arr[i][mid];
max_index = i;
}
}
return max_index;
}
// Function to change the value of [max]
function Max(arr, rows, mid, max)
{
for (let i = 0; i < rows; i++)
{
if (max < arr[i][mid])
{
// Saving global maximum and its index
// to check its neighbours
max = arr[i][mid];
}
}
return max;
}
// Function to find a peak element
function findPeakRec(arr, rows, columns, mid)
{
// Evaluating maximum of mid column.
// Note max is passed by reference.
let max = 0;
let max_index = findMax(arr, rows, mid, max);
max = Max(arr, rows, mid, max);
// If we are on the first or last column,
// max is a peak
if (mid == 0 || mid == columns - 1)
return max;
// If mid column maximum is also peak
if (max >= arr[max_index][mid - 1] &&
max >= arr[max_index][mid + 1])
return max;
// If max is less than its left
if (max < arr[max_index][mid - 1])
return findPeakRec(arr, rows, columns, (mid - Math.ceil(mid / 2)));
// If max is less than its left
// if (max < arr[max_index][mid+1])
return findPeakRec(arr, rows, columns, (mid + Math.ceil(mid / 2)));
}
// A wrapper over findPeakRec()
function findPeak(arr, rows, columns)
{
return findPeakRec(arr, rows, columns, parseInt(columns / 2, 10));
}
let arr = [[ 10, 8, 10, 10 ],
[ 14, 13, 12, 11 ],
[ 15, 9, 11, 21 ],
[ 16, 17, 19, 20 ]];
// Number of Columns
let rows = 4, columns = 4;
document.write(findPeak(arr, rows, columns));
</script>


输出:

21

时间复杂度:O(行*日志(列))。我们重复出现的列数只有原来的一半。在每个递归调用中,我们线性搜索当前中间列中的最大值。 辅助空间:O(列/2)用于递归调用堆栈 资料来源: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/lecture-videos/MIT6_006F11_lec01.pdf

本文由 罗希特·塔普里亚尔 .如果你喜欢GeekSforgek,并想贡献自己的力量,你也可以使用 写极客。组织 或者把你的文章寄到contribute@geeksforgeeks.org.看到你的文章出现在Geeksforgeks主页上,并帮助其他极客。 如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写下评论。

© 版权声明
THE END
喜欢就支持一下吧
点赞9 分享