大门|大门-CS-2015(第1组)|问题54

  int_{frac{1}{pi}}^{frac{2}{pi}} cos(frac{1/x}{x^{2}})dx = ...........  (A) 0 (B) -1 (C) 1. (D) 极大的 答复: (B) 说明: 设f(x)为给定函数。我们假设[frac{1}{x}=z]

null

区分双方,我们得到

 [frac{-1}{x^2} dx = dz] Now, accordingly, the lower limit of the integral is [ z = frac{1}{frac{1}{pi}} = pi] and the upper limit for the integral is [ z = frac{1}{frac{2}{pi}} = frac{pi}{2}] So, the given function now becomes [ f(x)= - int_pi^{frac{pi}{2}} cos(z) dz ] [ f(x)= int_frac{pi}{2}^{pi} cos(z) dz ] [f(x) = sin(z) ,] and the upper limit is π and the lower limit is π/2 So, [f(x) = sin(pi) - sin(frac{pi}{2})] [f(x) = 0 - 1] [f(x) = -1] So, the required answer is -1.

这个问题的小测验

© 版权声明
THE END
喜欢就支持一下吧
点赞11 分享