GATE | GATE-CS-2006 |问题25

设S={1,2,3,…,m},m>3。让x1,x2,…。xn是大小为3的S的子集。将函数f从S定义为自然数集合,f(i)是集合数 X_j 包含元素i,即f(i)={j|i epsilon X_j }|. 然后 sum_{i=1}f(i) 是: (A) 3米 (B) 3n (C) 2m+1 (D) 2n+1 答复: (B) 说明: 首先,大小为3的S的子集数为mC3,即n=mC3。现在我们计算一个特定元素i出现的子集的数量,即(m)−1) C2,因为1个元素已知,我们必须从剩余的m-1元素中选择2个元素。

null

sumlimits_{i=1}^{m} f(i) = m * ^{m-1}mathrm{C}_2 = 3 * ^mmathrm{C}_3 = 3n 这个问题的小测验

© 版权声明
THE END
喜欢就支持一下吧
点赞6 分享