大门|大门-CS-2007 |问题28

考虑X系列 n+1 =X N /2+9/(8 X) N ),X 0 =0.5,由牛顿-拉斐逊法得出。级数收敛到 (A) 1.5 (B) sqrt(2) (C) 1.6 (D) 1.4 答复: (A) 说明:

null
As per Newton Rapson's Method, 

Xn+1  = Xn − f(Xn)/f′(Xn)

Here above equation is given in the below form

Xn+1 = Xn/2 + 9/(8 Xn)

Let us try to convert in Newton Rapson's form by putting Xn as
first part.
Xn+1  = Xn - Xn/2 + 9/(8 Xn)
                 = Xn - (4*Xn2 - 9)/(8*Xn) 

So    f(X)  =  (4*Xn2 - 9)
 and  f'(X) =  8*Xn 

显然f(X)=4X 2. − 9.我们知道它的根是±3/2=±1.5,但如果我们从X开始 0 =0.5,根据等式,我们在任何时候都不能得到负值,所以答案是1.5,即选项(A)是正确的。 这个问题的小测验

© 版权声明
THE END
喜欢就支持一下吧
点赞12 分享