考虑X系列 n+1 =X N /2+9/(8 X) N ),X 0 =0.5,由牛顿-拉斐逊法得出。级数收敛到 (A) 1.5 (B) sqrt(2) (C) 1.6 (D) 1.4 答复: (A) 说明:
null
As per Newton Rapson's Method, Xn+1 = Xn − f(Xn)/f′(Xn) Here above equation is given in the below form Xn+1 = Xn/2 + 9/(8 Xn) Let us try to convert in Newton Rapson's form by putting Xn as first part. Xn+1 = Xn - Xn/2 + 9/(8 Xn) = Xn - (4*Xn2 - 9)/(8*Xn) So f(X) = (4*Xn2 - 9) and f'(X) = 8*Xn
显然f(X)=4X 2. − 9.我们知道它的根是±3/2=±1.5,但如果我们从X开始 0 =0.5,根据等式,我们在任何时候都不能得到负值,所以答案是1.5,即选项(A)是正确的。 这个问题的小测验
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END