设A为2×2矩阵,元素a11=a12=a21=+1和a22=−1.然后矩阵A的特征值 19 是
null
(A) A. (B) B (C) C (D) D 答复: (D) 说明:
A = 1 1 1 -1 A2 = 2 0 0 2 A4 = A2 X A2 A4 = 4 0 0 4 A8 = 16 0 0 16 A16 = 256 0 0 256 A18 = A16 X A2 A18 = 512 0 0 512 A19 = 512 512 512 -512 Applying Characteristic polynomial 512-lambda 512 512 -(512+lambda) = 0 -(512-lambda)(512+lambda) - 512 x 512 = 0 lambda2 = 2 x 5122
替代解决方案:
det(A) = -2. det(A^19) = (det(A))^19 = -2^19 = lambda1*lambda2. The only viable option is D.
感谢Matan Mandelbrod提出了这个解决方案。
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END