给定两个数x和n,找出x可以表示为唯一自然数n次幂和的几种方法。
null
例如:
输入: x=10,n=2 输出: 1. 说明: 10 = 1 2. + 3 2. 因此总共有1种可能性
输入: x=100,n=2 输出: 3. E 解释: 100 = 10 2. 或者6 2. + 8 2. 或1 2. + 3 2. + 4 2. + 5 2. + 7 2. 因此总共有3种可能性
这个想法很简单。我们迭代从1开始的所有数字。对于每个数,我们递归地尝试所有更大的数,如果我们能找到和,我们就会增加结果
C++
// C++ program to count number of ways any // given integer x can be expressed as n-th // power of unique natural numbers. #include <bits/stdc++.h> using namespace std; // Function to calculate and return the // power of any given number int power( int num, unsigned int n) { if (n == 0) return 1; else if (n % 2 == 0) return power(num, n / 2) * power(num, n / 2); else return num * power(num, n / 2) * power(num, n / 2); } // Function to check power representations recursively int checkRecursive( int x, int n, int curr_num = 1, int curr_sum = 0) { // Initialize number of ways to express // x as n-th powers of different natural // numbers int results = 0; // Calling power of 'i' raised to 'n' int p = power(curr_num, n); while (p + curr_sum < x) { // Recursively check all greater values of i results += checkRecursive(x, n, curr_num + 1, p + curr_sum); curr_num++; p = power(curr_num, n); } // If sum of powers is equal to x // then increase the value of result. if (p + curr_sum == x) results++; // Return the final result return results; } // Driver Code. int main() { int x = 10, n = 2; cout << checkRecursive(x, n); return 0; } |
JAVA
// Java program to count number of ways any // given integer x can be expressed as n-th // power of unique natural numbers. class GFG { // Function to calculate and return the // power of any given number static int power( int num, int n) { if (n == 0 ) return 1 ; else if (n % 2 == 0 ) return power(num, n / 2 ) * power(num, n / 2 ); else return num * power(num, n / 2 ) * power(num, n / 2 ); } // Function to check power representations recursively static int checkRecursive( int x, int n, int curr_num, int curr_sum) { // Initialize number of ways to express // x as n-th powers of different natural // numbers int results = 0 ; // Calling power of 'i' raised to 'n' int p = power(curr_num, n); while (p + curr_sum < x) { // Recursively check all greater values of i results += checkRecursive(x, n, curr_num + 1 , p + curr_sum); curr_num++; p = power(curr_num, n); } // If sum of powers is equal to x // then increase the value of result. if (p + curr_sum == x) results++; // Return the final result return results; } // Driver Code. public static void main(String[] args) { int x = 10 , n = 2 ; System.out.println(checkRecursive(x, n, 1 , 0 )); } } // This code is contributed by mits |
Python3
# Python3 program to count number of ways any # given integer x can be expressed as n-th # power of unique natural numbers. # Function to calculate and return the # power of any given number def power(num, n): if (n = = 0 ): return 1 elif (n % 2 = = 0 ): return power(num, n / / 2 ) * power(num, n / / 2 ) else : return num * power(num, n / / 2 ) * power(num, n / / 2 ) # Function to check power representations recursively def checkRecursive(x, n, curr_num = 1 , curr_sum = 0 ): # Initialize number of ways to express # x as n-th powers of different natural # numbers results = 0 # Calling power of 'i' raised to 'n' p = power(curr_num, n) while (p + curr_sum < x): # Recursively check all greater values of i results + = checkRecursive(x, n, curr_num + 1 , p + curr_sum) curr_num = curr_num + 1 p = power(curr_num, n) # If sum of powers is equal to x # then increase the value of result. if (p + curr_sum = = x): results = results + 1 # Return the final result return results # Driver Code. if __name__ = = '__main__' : x = 10 n = 2 print (checkRecursive(x, n)) # This code is contributed by # Sanjit_Prasad |
C#
// C# program to count number of ways any // given integer x can be expressed as // n-th power of unique natural numbers. using System; class GFG { // Function to calculate and return // the power of any given number static int power( int num, int n) { if (n == 0) return 1; else if (n % 2 == 0) return power(num, n / 2) * power(num, n / 2); else return num * power(num, n / 2) * power(num, n / 2); } // Function to check power // representations recursively static int checkRecursive( int x, int n, int curr_num, int curr_sum) { // Initialize number of ways to express // x as n-th powers of different natural // numbers int results = 0; // Calling power of 'i' raised to 'n' int p = power(curr_num, n); while (p + curr_sum < x) { // Recursively check all greater values of i results += checkRecursive(x, n, curr_num + 1, p + curr_sum); curr_num++; p = power(curr_num, n); } // If sum of powers is equal to x // then increase the value of result. if (p + curr_sum == x) results++; // Return the final result return results; } // Driver Code. public static void Main() { int x = 10, n = 2; System.Console.WriteLine( checkRecursive(x, n, 1, 0)); } } // This code is contributed by mits |
PHP
<?php // PHP program to count // number of ways any // given integer x can // be expressed as n-th // power of unique // natural numbers. // Function to calculate and return // the power of any given number function power( $num , $n ) { if ( $n == 0) return 1; else if ( $n % 2 == 0) return power( $num , (int)( $n / 2)) * power( $num , (int)( $n / 2)); else return $num * power( $num , (int)( $n / 2)) * power( $num , (int)( $n / 2)); } // Function to check power // representations recursively function checkRecursive( $x , $n , $curr_num = 1, $curr_sum = 0) { // Initialize number of // ways to express // x as n-th powers // of different natural // numbers $results = 0; // Calling power of 'i' // raised to 'n' $p = power( $curr_num , $n ); while ( $p + $curr_sum < $x ) { // Recursively check all // greater values of i $results += checkRecursive( $x , $n , $curr_num + 1, $p + $curr_sum ); $curr_num ++; $p = power( $curr_num , $n ); } // If sum of powers // is equal to x // then increase the // value of result. if ( $p + $curr_sum == $x ) $results ++; // Return the final result return $results ; } // Driver Code. $x = 10; $n = 2; echo (checkRecursive( $x , $n )); // This code is contributed by Ajit. ?> |
Javascript
<script> // javascript program to count number of ways any // given integer x can be expressed as n-th // power of unique natural numbers. // Function to calculate and return the // power of any given number function power(num , n) { if (n == 0) return 1; else if (n % 2 == 0) return power(num, parseInt(n / 2)) * power(num, parseInt(n / 2)); else return num * power(num,parseInt(n / 2)) * power(num, parseInt(n / 2)); } // Function to check power representations recursively function checkRecursive(x , n , curr_num , curr_sum) { // Initialize number of ways to express // x as n-th powers of different natural // numbers var results = 0; // Calling power of 'i' raised to 'n' var p = power(curr_num, n); while (p + curr_sum < x) { // Recursively check all greater values of i results += checkRecursive(x, n, curr_num + 1, p + curr_sum); curr_num++; p = power(curr_num, n); } // If sum of powers is equal to x // then increase the value of result. if (p + curr_sum == x) results++; // Return the final result return results; } // Driver Code. var x = 10, n = 2; document.write(checkRecursive(x, n, 1, 0)); // This code is contributed by gauravrajput1 </script> |
输出
1
替代解决方案:
下面是由 希瓦姆·卡诺迪亚 .
C++
// C++ program to find number of ways to express // a number as sum of n-th powers of numbers. #include<bits/stdc++.h> using namespace std; int res = 0; int checkRecursive( int num, int x, int k, int n) { if (x == 0) res++; int r = ( int ) floor ( pow (num, 1.0 / n)); for ( int i = k + 1; i <= r; i++) { int a = x - ( int ) pow (i, n); if (a >= 0) checkRecursive(num, x - ( int ) pow (i, n), i, n); } return res; } // Wrapper over checkRecursive() int check( int x, int n) { return checkRecursive(x, x, 0, n); } // Driver Code int main() { cout << (check(10, 2)); return 0; } // This code is contributed by mits |
JAVA
// Java program to find number of ways to express a // number as sum of n-th powers of numbers. import java.io.*; import java.util.*; public class Solution { static int res = 0 ; static int checkRecursive( int num, int x, int k, int n) { if (x == 0 ) res++; int r = ( int )Math.floor(Math.pow(num, 1.0 / n)); for ( int i = k + 1 ; i <= r; i++) { int a = x - ( int )Math.pow(i, n); if (a >= 0 ) checkRecursive(num, x - ( int )Math.pow(i, n), i, n); } return res; } // Wrapper over checkRecursive() static int check( int x, int n) { return checkRecursive(x, x, 0 , n); } public static void main(String[] args) { System.out.println(check( 10 , 2 )); } } |
Python3
# Python 3 program to find number of ways to express # a number as sum of n-th powers of numbers. def checkRecursive(num, rem_num, next_int, n, ans = 0 ): if (rem_num = = 0 ): ans + = 1 r = int (num * * ( 1 / n)) for i in range (next_int + 1 , r + 1 ): a = rem_num - int (i * * n) if a > = 0 : ans + = checkRecursive(num, rem_num - int (i * * n), i, n, 0 ) return ans # Wrapper over checkRecursive() def check(x, n): return checkRecursive(x, x, 0 , n) # Driver Code if __name__ = = '__main__' : print (check( 10 , 2 )) # This code is contributed by # Surendra_Gangwar |
C#
// C# program to find number of // ways to express a number as sum // of n-th powers of numbers. using System; class Solution { static int res = 0; static int checkRecursive( int num, int x, int k, int n) { if (x == 0) res++; int r = ( int )Math.Floor(Math.Pow(num, 1.0 / n)); for ( int i = k + 1; i <= r; i++) { int a = x - ( int )Math.Pow(i, n); if (a >= 0) checkRecursive(num, x - ( int )Math.Pow(i, n), i, n); } return res; } // Wrapper over checkRecursive() static int check( int x, int n) { return checkRecursive(x, x, 0, n); } // Driver code public static void Main() { Console.WriteLine(check(10, 2)); } } // This code is contributed by vt_m. |
PHP
<?php // PHP program to find number // of ways to express a number // as sum of n-th powers of numbers. $res = 0; function checkRecursive( $num , $x , $k , $n ) { global $res ; if ( $x == 0) $res ++; $r = (int) floor (pow( $num , 1.0 / $n )); for ( $i = $k + 1; $i <= $r ; $i ++) { $a = $x - (int)pow( $i , $n ); if ( $a >= 0) checkRecursive( $num , $x - (int)pow( $i , $n ), $i , $n ); } return $res ; } // Wrapper over // checkRecursive() function check( $x , $n ) { return checkRecursive( $x , $x , 0, $n ); } // Driver Code echo (check(10, 2)); // This code is contributed by ajit ?> |
Javascript
<script> // JavaScript program for the above approach let res = 0; function checkRecursive(num, x, k, n) { if (x == 0) res++; let r = Math.floor(Math.pow(num, 1.0 / n)); for (let i = k + 1; i <= r; i++) { let a = x - Math.pow(i, n); if (a >= 0) checkRecursive(num, x - Math.pow(i, n), i, n); } return res; } // Wrapper over checkRecursive() function check(x, n) { return checkRecursive(x, x, 0, n); } // Driver Code document.write(check(10, 2)); // This code is contributed by splevel62. </script> |
输出
1
简单的递归解决方案:
贡献者 拉姆·琼德尔 .
C++
#include <iostream> #include<cmath> using namespace std; //Helper function int getAllWaysHelper( int remainingSum, int power, int base){ //calculate power int result = pow (base, power); if (remainingSum == result) return 1; if (remainingSum < result) return 0; //Two recursive calls one to include current base's power in sum another to exclude int x = getAllWaysHelper(remainingSum - result, power, base + 1); int y = getAllWaysHelper(remainingSum, power, base+1); return x + y; } int getAllWays( int sum, int power) { return getAllWaysHelper(sum, power, 1); } // Driver Code. int main() { int x = 10, n = 2; cout << getAllWays(x, n); return 0; } |
C#
using System; class GFG { // Helper function static int getAllWaysHelper( int remainingSum, int power, int bases) { // calculate power int result = ( int )Math.Pow(bases, power); if (remainingSum == result) return 1; if (remainingSum < result) return 0; // Two recursive calls one to include current base's // power in sum another to exclude int x = getAllWaysHelper(remainingSum - result, power, bases + 1); int y = getAllWaysHelper(remainingSum, power, bases + 1); return x + y; } static int getAllWays( int sum, int power) { return getAllWaysHelper(sum, power, 1); } // Driver Code. public static int Main() { int x = 10, n = 2; Console.Write(getAllWays(x, n)); return 0; } } // This code is contributed by Taranpreet |
输出
1
本文由 丹麦卡里姆 .如果你喜欢GeekSforgek,并想贡献自己的力量,你也可以使用 写极客。组织 或者把你的文章寄去评论-team@geeksforgeeks.org.看到你的文章出现在Geeksforgeks主页上,并帮助其他极客。 如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写下评论。
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END