给定一个整数数组和一个数字k,求大小为k的子数组的最大和。
null
例如:
Input : arr[] = {100, 200, 300, 400} k = 2Output : 700Input : arr[] = {1, 4, 2, 10, 23, 3, 1, 0, 20} k = 4 Output : 39We get maximum sum by adding subarray {4, 2, 10, 23}of size 4.Input : arr[] = {2, 3} k = 3Output : InvalidThere is no subarray of size 3 as size of wholearray is 2.
A. 简单解决方案 就是 生成所有子阵列 对于大小k,计算它们的和,最后返回所有和的最大值。该解的时间复杂度为O(n*k)。
一 有效解决方案 基于这样一个事实,即大小为k的子阵列(或窗口)的和可以使用大小为k的前一个子阵列(或窗口)的和在O(1)时间内获得。除了大小为k的第一个子阵列,对于其他子阵列,我们通过移除最后一个窗口的第一个元素并添加当前窗口的最后一个元素来计算和。 下面是上述想法的实施。
C++
// O(n) solution for finding maximum sum of // a subarray of size k #include <iostream> using namespace std; // Returns maximum sum in a subarray of size k. int maxSum( int arr[], int n, int k) { // k must be smaller than n if (n < k) { cout << "Invalid" ; return -1; } // Compute sum of first window of size k int res = 0; for ( int i=0; i<k; i++) res += arr[i]; // Compute sums of remaining windows by // removing first element of previous // window and adding last element of // current window. int curr_sum = res; for ( int i=k; i<n; i++) { curr_sum += arr[i] - arr[i-k]; res = max(res, curr_sum); } return res; } // Driver code int main() { int arr[] = {1, 4, 2, 10, 2, 3, 1, 0, 20}; int k = 4; int n = sizeof (arr)/ sizeof (arr[0]); cout << maxSum(arr, n, k); return 0; } |
JAVA
// JAVA Code for Find maximum (or minimum) // sum of a subarray of size k import java.util.*; class GFG { // Returns maximum sum in a subarray of size k. public static int maxSum( int arr[], int n, int k) { // k must be smaller than n if (n < k) { System.out.println( "Invalid" ); return - 1 ; } // Compute sum of first window of size k int res = 0 ; for ( int i= 0 ; i<k; i++) res += arr[i]; // Compute sums of remaining windows by // removing first element of previous // window and adding last element of // current window. int curr_sum = res; for ( int i=k; i<n; i++) { curr_sum += arr[i] - arr[i-k]; res = Math.max(res, curr_sum); } return res; } /* Driver program to test above function */ public static void main(String[] args) { int arr[] = { 1 , 4 , 2 , 10 , 2 , 3 , 1 , 0 , 20 }; int k = 4 ; int n = arr.length; System.out.println(maxSum(arr, n, k)); } } // This code is contributed by Arnav Kr. Mandal. |
Python3
# O(n) solution in Python3 for finding # maximum sum of a subarray of size k # Returns maximum sum in # a subarray of size k. def maxSum(arr, n, k): # k must be smaller than n if (n < k): print ( "Invalid" ) return - 1 # Compute sum of first # window of size k res = 0 for i in range (k): res + = arr[i] # Compute sums of remaining windows by # removing first element of previous # window and adding last element of # current window. curr_sum = res for i in range (k, n): curr_sum + = arr[i] - arr[i - k] res = max (res, curr_sum) return res # Driver code arr = [ 1 , 4 , 2 , 10 , 2 , 3 , 1 , 0 , 20 ] k = 4 n = len (arr) print (maxSum(arr, n, k)) # This code is contributed by Anant Agarwal. |
C#
// C# Code for Find maximum (or minimum) // sum of a subarray of size k using System; class GFG { // Returns maximum sum in // a subarray of size k. public static int maxSum( int []arr, int n, int k) { // k must be smaller than n if (n < k) { Console.Write( "Invalid" ); return -1; } // Compute sum of first window of size k int res = 0; for ( int i = 0; i < k; i++) res += arr[i]; // Compute sums of remaining windows by // removing first element of previous // window and adding last element of // current window. int curr_sum = res; for ( int i = k; i < n; i++) { curr_sum += arr[i] - arr[i - k]; res = Math.Max(res, curr_sum); } return res; } // Driver Code public static void Main() { int []arr = {1, 4, 2, 10, 2, 3, 1, 0, 20}; int k = 4; int n = arr.Length; Console.Write(maxSum(arr, n, k)); } } // This code is contributed by nitin mittal. |
PHP
<?php // O(n) solution for finding maximum // sum of a subarray of size k // Returns maximum sum in a // subarray of size k. function maxSum( $arr , $n , $k ) { // k must be smaller than n if ( $n < $k ) { echo "Invalid" ; return -1; } // Compute sum of first // window of size k $res = 0; for ( $i = 0; $i < $k ; $i ++) $res += $arr [ $i ]; // Compute sums of remaining windows by // removing first element of previous // window and adding last element of // current window. $curr_sum = $res ; for ( $i = $k ; $i < $n ; $i ++) { $curr_sum += $arr [ $i ] - $arr [ $i - $k ]; $res = max( $res , $curr_sum ); } return $res ; } // Driver Code $arr = array (1, 4, 2, 10, 2, 3, 1, 0, 20); $k = 4; $n = sizeof( $arr ); echo maxSum( $arr , $n , $k ); // This code is contributed by nitin mittal. ?> |
Javascript
<script> // JAVA SCRIPT Code for Find maximum (or minimum) // sum of a subarray of size k // Returns maximum sum in a subarray of size k. function maxSum(arr,n,k) { // k must be smaller than n if (n < k) { document.write( "Invalid" ); return -1; } // Compute sum of first window of size k let res = 0; for (let i=0; i<k; i++) res += arr[i]; // Compute sums of remaining windows by // removing first element of previous // window and adding last element of // current window. let curr_sum = res; for (let i=k; i<n; i++) { curr_sum += arr[i] - arr[i-k]; res = Math.max(res, curr_sum); } return res; } /* Driver program to test above function */ let arr = [1, 4, 2, 10, 2, 3, 1, 0, 20]; let k = 4; let n = arr.length; document.write(maxSum(arr, n, k)); // This code is contributed by sravan kumar Gottumukkala </script> |
输出:
24
时间复杂性: O(n) 辅助空间: O(1)
本文由 阿披实古普塔 .如果你喜欢GeekSforgek,并想贡献自己的力量,你也可以写一篇文章,然后将文章邮寄给评论-team@geeksforgeeks.org.看到你的文章出现在Geeksforgeks主页上,并帮助其他极客。 如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写评论
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END