无向图的边数

给定一个无向图的邻接表表示。编写一个函数来计算无向图中的边数。

null

预期时间复杂度:O(V)

例如:

Input : Adjacency list representation of
        below graph.  
Output : 9
Edge

这个想法基于握手引理。 握手引理 是关于无向图的。在每一个有限无向图中,奇数次顶点的数目总是偶数。握手引理是度和公式的结果(有时也称为握手引理)

    handshaking 

所以我们遍历所有顶点,计算它们的邻接列表的大小之和,最后返回sum/2。下面是上述想法的实现

C++

// C++ program to count number of edge in
// undirected graph
#include<bits/stdc++.h>
using namespace std;
// Adjacency list representation of graph
class Graph
{
int V ;
list < int > *adj;
public :
Graph( int V )
{
this ->V = V ;
adj = new list< int >[V];
}
void addEdge ( int u, int v ) ;
int countEdges () ;
};
// add edge to graph
void Graph :: addEdge ( int u, int v )
{
adj[u].push_back(v);
adj[v].push_back(u);
}
// Returns count of edge in undirected graph
int Graph :: countEdges()
{
int sum = 0;
//traverse all vertex
for ( int i = 0 ; i < V ; i++)
// add all edge that are linked to the
// current vertex
sum += adj[i].size();
// The count of edge is always even because in
// undirected graph every edge is connected
// twice between two vertices
return sum/2;
}
// driver program to check above function
int main()
{
int V = 9 ;
Graph g(V);
// making above uhown graph
g.addEdge(0, 1 );
g.addEdge(0, 7 );
g.addEdge(1, 2 );
g.addEdge(1, 7 );
g.addEdge(2, 3 );
g.addEdge(2, 8 );
g.addEdge(2, 5 );
g.addEdge(3, 4 );
g.addEdge(3, 5 );
g.addEdge(4, 5 );
g.addEdge(5, 6 );
g.addEdge(6, 7 );
g.addEdge(6, 8 );
g.addEdge(7, 8 );
cout << g.countEdges() << endl;
return 0;
}


JAVA

// Java program to count number of edge in
// undirected graph
import java.io.*;
import java.util.*;
// Adjacency list representation of graph
class Graph
{
int V;
Vector<Integer>[] adj;
//@SuppressWarnings("unchecked")
Graph( int V)
{
this .V = V;
this .adj = new Vector[V];
for ( int i = 0 ; i < V; i++)
adj[i] = new Vector<Integer>();
}
// add edge to graph
void addEdge( int u, int v)
{
adj[u].add(v);
adj[v].add(u);
}
// Returns count of edge in undirected graph
int countEdges()
{
int sum = 0 ;
// traverse all vertex
for ( int i = 0 ; i < V; i++)
// add all edge that are linked to the
// current vertex
sum += adj[i].size();
// The count of edge is always even because in
// undirected graph every edge is connected
// twice between two vertices
return sum / 2 ;
}
}
class GFG
{
// Driver Code
public static void main(String[] args) throws IOException
{
int V = 9 ;
Graph g = new Graph(V);
// making above uhown graph
g.addEdge( 0 , 1 );
g.addEdge( 0 , 7 );
g.addEdge( 1 , 2 );
g.addEdge( 1 , 7 );
g.addEdge( 2 , 3 );
g.addEdge( 2 , 8 );
g.addEdge( 2 , 5 );
g.addEdge( 3 , 4 );
g.addEdge( 3 , 5 );
g.addEdge( 4 , 5 );
g.addEdge( 5 , 6 );
g.addEdge( 6 , 7 );
g.addEdge( 6 , 8 );
g.addEdge( 7 , 8 );
System.out.println(g.countEdges());
}
}
// This code is contributed by
// sanjeev2552


Python3

# Python3 program to count number of
# edge in undirected graph
# Adjacency list representation of graph
class Graph:
def __init__( self , V):
self .V = V
self .adj = [[] for i in range (V)]
# add edge to graph
def addEdge ( self , u, v ):
self .adj[u].append(v)
self .adj[v].append(u)
# Returns count of edge in undirected graph
def countEdges( self ):
Sum = 0
# traverse all vertex
for i in range ( self .V):
# add all edge that are linked
# to the current vertex
Sum + = len ( self .adj[i])
# The count of edge is always even
# because in undirected graph every edge
# is connected twice between two vertices
return Sum / / 2
# Driver Code
if __name__ = = '__main__' :
V = 9
g = Graph(V)
# making above uhown graph
g.addEdge( 0 , 1 )
g.addEdge( 0 , 7 )
g.addEdge( 1 , 2 )
g.addEdge( 1 , 7 )
g.addEdge( 2 , 3 )
g.addEdge( 2 , 8 )
g.addEdge( 2 , 5 )
g.addEdge( 3 , 4 )
g.addEdge( 3 , 5 )
g.addEdge( 4 , 5 )
g.addEdge( 5 , 6 )
g.addEdge( 6 , 7 )
g.addEdge( 6 , 8 )
g.addEdge( 7 , 8 )
print (g.countEdges())
# This code is contributed by PranchalK


C#

// C# program to count number of edge in
// undirected graph
using System;
using System.Collections.Generic;
// Adjacency list representation of graph
class Graph
{
public int V;
public List< int >[] adj;
public Graph( int V)
{
this .V = V;
this .adj = new List< int >[V];
for ( int i = 0; i < V; i++)
adj[i] = new List< int >();
}
// add edge to graph
public void addEdge( int u, int v)
{
adj[u].Add(v);
adj[v].Add(u);
}
// Returns count of edge in undirected graph
public int countEdges()
{
int sum = 0;
// traverse all vertex
for ( int i = 0; i < V; i++)
// add all edge that are linked to the
// current vertex
sum += adj[i].Count;
// The count of edge is always even because in
// undirected graph every edge is connected
// twice between two vertices
return sum / 2;
}
}
class GFG
{
// Driver Code
public static void Main(String[] args)
{
int V = 9;
Graph g = new Graph(V);
// making above uhown graph
g.addEdge(0, 1);
g.addEdge(0, 7);
g.addEdge(1, 2);
g.addEdge(1, 7);
g.addEdge(2, 3);
g.addEdge(2, 8);
g.addEdge(2, 5);
g.addEdge(3, 4);
g.addEdge(3, 5);
g.addEdge(4, 5);
g.addEdge(5, 6);
g.addEdge(6, 7);
g.addEdge(6, 8);
g.addEdge(7, 8);
Console.WriteLine(g.countEdges());
}
}
// This code is contributed by PrinciRaj1992


输出:

14

时间复杂性: O(V)

本文由 尼桑·辛格 .如果你喜欢GeekSforgek,并想贡献自己的力量,你也可以使用 贡献极客。组织 或者把你的文章寄到contribute@geeksforgeeks.org.看到你的文章出现在Geeksforgeks主页上,并帮助其他极客。

如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写下评论。

© 版权声明
THE END
喜欢就支持一下吧
点赞8 分享