在矩阵中找到特定的一对

给定一个n x n矩阵mat[n][n]的整数,求mat(c,d)–mat(a,b)在所有索引选择上的最大值,使c>a和d>b。 例子:

null
Input:mat[N][N] = {{ 1, 2, -1, -4, -20 },             { -8, -3, 4, 2, 1 },              { 3, 8, 6, 1, 3 },             { -4, -1, 1, 7, -6 },             { 0, -4, 10, -5, 1 }};Output: 18The maximum value is 18 as mat[4][2] - mat[1][0] = 18 has maximum difference. 

程序应该只对矩阵进行一次遍历。i、 e.预期时间复杂度为O(n 2. ) A. 简单解决方案 就是使用暴力。对于矩阵中的所有值mat(a,b),我们发现mat(c,d)具有最大值,例如c>a和d>b,并不断更新迄今为止发现的最大值。我们最终返回最大值。 下面是它的实现。

C++

// A Naive method to find maximum value of mat[d][e]
// - ma[a][b] such that d > a and e > b
#include <bits/stdc++.h>
using namespace std;
#define N 5
// The function returns maximum value A(d,e) - A(a,b)
// over all choices of indexes such that both d > a
// and e > b.
int findMaxValue( int mat[][N])
{
// stores maximum value
int maxValue = INT_MIN;
// Consider all possible pairs mat[a][b] and
// mat[d][e]
for ( int a = 0; a < N - 1; a++)
for ( int b = 0; b < N - 1; b++)
for ( int d = a + 1; d < N; d++)
for ( int e = b + 1; e < N; e++)
if (maxValue < (mat[d][e] - mat[a][b]))
maxValue = mat[d][e] - mat[a][b];
return maxValue;
}
// Driver program to test above function
int main()
{
int mat[N][N] = {
{ 1, 2, -1, -4, -20 },
{ -8, -3, 4, 2, 1 },
{ 3, 8, 6, 1, 3 },
{ -4, -1, 1, 7, -6 },
{ 0, -4, 10, -5, 1 }
};
cout << "Maximum Value is "
<< findMaxValue(mat);
return 0;
}


JAVA

// A Naive method to find maximum value of mat1[d][e]
// - ma[a][b] such that d > a and e > b
import java.io.*;
import java.util.*;
class GFG
{
// The function returns maximum value A(d,e) - A(a,b)
// over all choices of indexes such that both d > a
// and e > b.
static int findMaxValue( int N, int mat[][])
{
// stores maximum value
int maxValue = Integer.MIN_VALUE;
// Consider all possible pairs mat[a][b] and
// mat1[d][e]
for ( int a = 0 ; a < N - 1 ; a++)
for ( int b = 0 ; b < N - 1 ; b++)
for ( int d = a + 1 ; d < N; d++)
for ( int e = b + 1 ; e < N; e++)
if (maxValue < (mat[d][e] - mat[a][b]))
maxValue = mat[d][e] - mat[a][b];
return maxValue;
}
// Driver code
public static void main (String[] args)
{
int N = 5 ;
int mat[][] = {
{ 1 , 2 , - 1 , - 4 , - 20 },
{ - 8 , - 3 , 4 , 2 , 1 },
{ 3 , 8 , 6 , 1 , 3 },
{ - 4 , - 1 , 1 , 7 , - 6 },
{ 0 , - 4 , 10 , - 5 , 1 }
};
System.out.print( "Maximum Value is " +
findMaxValue(N,mat));
}
}
// This code is contributed
// by Prakriti Gupta


Python 3

# A Naive method to find maximum
# value of mat[d][e] - mat[a][b]
# such that d > a and e > b
N = 5
# The function returns maximum
# value A(d,e) - A(a,b) over
# all choices of indexes such
# that both d > a and e > b.
def findMaxValue(mat):
# stores maximum value
maxValue = 0
# Consider all possible pairs
# mat[a][b] and mat[d][e]
for a in range (N - 1 ):
for b in range (N - 1 ):
for d in range (a + 1 , N):
for e in range (b + 1 , N):
if maxValue < int (mat[d][e] -
mat[a][b]):
maxValue = int (mat[d][e] -
mat[a][b]);
return maxValue;
# Driver Code
mat = [[ 1 , 2 , - 1 , - 4 , - 20 ],
[ - 8 , - 3 , 4 , 2 , 1 ],
[ 3 , 8 , 6 , 1 , 3 ],
[ - 4 , - 1 , 1 , 7 , - 6 ],
[ 0 , - 4 , 10 , - 5 , 1 ]];
print ( "Maximum Value is " +
str (findMaxValue(mat)))
# This code is contributed
# by ChitraNayal


C#

// A Naive method to find maximum
// value of mat[d][e] - mat[a][b]
// such that d > a and e > b
using System;
class GFG
{
// The function returns
// maximum value A(d,e) - A(a,b)
// over all choices of indexes
// such that both d > a
// and e > b.
static int findMaxValue( int N,
int [,]mat)
{
//stores maximum value
int maxValue = int .MinValue;
// Consider all possible pairs
// mat[a][b] and mat[d][e]
for ( int a = 0; a< N - 1; a++)
for ( int b = 0; b < N - 1; b++)
for ( int d = a + 1; d < N; d++)
for ( int e = b + 1; e < N; e++)
if (maxValue < (mat[d, e] -
mat[a, b]))
maxValue = mat[d, e] -
mat[a, b];
return maxValue;
}
// Driver code
public static void Main ()
{
int N = 5;
int [,]mat = {{1, 2, -1, -4, -20},
{-8, -3, 4, 2, 1},
{3, 8, 6, 1, 3},
{-4, -1, 1, 7, -6},
{0, -4, 10, -5, 1}};
Console.Write( "Maximum Value is " +
findMaxValue(N,mat));
}
}
// This code is contributed
// by ChitraNayal


PHP

<?php
// A Naive method to find maximum
// value of $mat[d][e] - ma[a][b]
// such that $d > $a and $e > $b
$N = 5;
// The function returns maximum
// value A(d,e) - A(a,b) over
// all choices of indexes such
// that both $d > $a and $e > $b.
function findMaxValue(& $mat )
{
global $N ;
// stores maximum value
$maxValue = PHP_INT_MIN;
// Consider all possible
// pairs $mat[$a][$b] and
// $mat[$d][$e]
for ( $a = 0; $a < $N - 1; $a ++)
for ( $b = 0; $b < $N - 1; $b ++)
for ( $d = $a + 1; $d < $N ; $d ++)
for ( $e = $b + 1; $e < $N ; $e ++)
if ( $maxValue < ( $mat [ $d ][ $e ] -
$mat [ $a ][ $b ]))
$maxValue = $mat [ $d ][ $e ] -
$mat [ $a ][ $b ];
return $maxValue ;
}
// Driver Code
$mat = array ( array (1, 2, -1, -4, -20),
array (-8, -3, 4, 2, 1),
array (3, 8, 6, 1, 3),
array (-4, -1, 1, 7, -6),
array (0, -4, 10, -5, 1));
echo "Maximum Value is " .
findMaxValue( $mat );
// This code is contributed
// by ChitraNayal
?>


Javascript

<script>
// A Naive method to find maximum value of mat1[d][e]
// - ma[a][b] such that d > a and e > b
// The function returns maximum value A(d,e) - A(a,b)
// over all choices of indexes such that both d > a
// and e > b.
function findMaxValue(N,mat)
{
// stores maximum value
let maxValue = Number.MIN_VALUE;
// Consider all possible pairs mat[a][b] and
// mat1[d][e]
for (let a = 0; a < N - 1; a++)
for (let b = 0; b < N - 1; b++)
for (let d = a + 1; d < N; d++)
for (let e = b + 1; e < N; e++)
if (maxValue < (mat[d][e] - mat[a][b]))
maxValue = mat[d][e] - mat[a][b];
return maxValue;
}
// Driver code
let N = 5;
let mat=[[ 1, 2, -1, -4, -20],[-8, -3, 4, 2, 1],[3, 8, 6, 1, 3],[ -4, -1, 1, 7, -6 ],[ 0, -4, 10, -5, 1 ]];
document.write( "Maximum Value is " +findMaxValue(N,mat));
// This code is contributed by rag2127
</script>


输出:

Maximum Value is 18

上述程序在O(n^4)时间内运行,这与O(n^2)的预期时间复杂度相差甚远 一 有效解决方案 使用额外的空间。我们对矩阵进行预处理,使索引(i,j)存储矩阵中从(i,j)到(N-1,N-1)的元素的最大值,并在这个过程中不断更新迄今为止发现的最大值。我们最终返回最大值。

C++

// An efficient method to find maximum value of mat[d]
// - ma[a][b] such that c > a and d > b
#include <bits/stdc++.h>
using namespace std;
#define N 5
// The function returns maximum value A(c,d) - A(a,b)
// over all choices of indexes such that both c > a
// and d > b.
int findMaxValue( int mat[][N])
{
//stores maximum value
int maxValue = INT_MIN;
// maxArr[i][j] stores max of elements in matrix
// from (i, j) to (N-1, N-1)
int maxArr[N][N];
// last element of maxArr will be same's as of
// the input matrix
maxArr[N-1][N-1] = mat[N-1][N-1];
// preprocess last row
int maxv = mat[N-1][N-1]; // Initialize max
for ( int j = N - 2; j >= 0; j--)
{
if (mat[N-1][j] > maxv)
maxv = mat[N - 1][j];
maxArr[N-1][j] = maxv;
}
// preprocess last column
maxv = mat[N - 1][N - 1]; // Initialize max
for ( int i = N - 2; i >= 0; i--)
{
if (mat[i][N - 1] > maxv)
maxv = mat[i][N - 1];
maxArr[i][N - 1] = maxv;
}
// preprocess rest of the matrix from bottom
for ( int i = N-2; i >= 0; i--)
{
for ( int j = N-2; j >= 0; j--)
{
// Update maxValue
if (maxArr[i+1][j+1] - mat[i][j] >
maxValue)
maxValue = maxArr[i + 1][j + 1] - mat[i][j];
// set maxArr (i, j)
maxArr[i][j] = max(mat[i][j],
max(maxArr[i][j + 1],
maxArr[i + 1][j]) );
}
}
return maxValue;
}
// Driver program to test above function
int main()
{
int mat[N][N] = {
{ 1, 2, -1, -4, -20 },
{ -8, -3, 4, 2, 1 },
{ 3, 8, 6, 1, 3 },
{ -4, -1, 1, 7, -6 },
{ 0, -4, 10, -5, 1 }
};
cout << "Maximum Value is "
<< findMaxValue(mat);
return 0;
}


JAVA

// An efficient method to find maximum value of mat1[d]
// - ma[a][b] such that c > a and d > b
import java.io.*;
import java.util.*;
class GFG
{
// The function returns maximum value A(c,d) - A(a,b)
// over all choices of indexes such that both c > a
// and d > b.
static int findMaxValue( int N, int mat[][])
{
//stores maximum value
int maxValue = Integer.MIN_VALUE;
// maxArr[i][j] stores max of elements in matrix
// from (i, j) to (N-1, N-1)
int maxArr[][] = new int [N][N];
// last element of maxArr will be same's as of
// the input matrix
maxArr[N- 1 ][N- 1 ] = mat[N- 1 ][N- 1 ];
// preprocess last row
int maxv = mat[N- 1 ][N- 1 ]; // Initialize max
for ( int j = N - 2 ; j >= 0 ; j--)
{
if (mat[N- 1 ][j] > maxv)
maxv = mat[N - 1 ][j];
maxArr[N- 1 ][j] = maxv;
}
// preprocess last column
maxv = mat[N - 1 ][N - 1 ]; // Initialize max
for ( int i = N - 2 ; i >= 0 ; i--)
{
if (mat[i][N - 1 ] > maxv)
maxv = mat[i][N - 1 ];
maxArr[i][N - 1 ] = maxv;
}
// preprocess rest of the matrix from bottom
for ( int i = N- 2 ; i >= 0 ; i--)
{
for ( int j = N- 2 ; j >= 0 ; j--)
{
// Update maxValue
if (maxArr[i+ 1 ][j+ 1 ] - mat[i][j] > maxValue)
maxValue = maxArr[i + 1 ][j + 1 ] - mat[i][j];
// set maxArr (i, j)
maxArr[i][j] = Math.max(mat[i][j],
Math.max(maxArr[i][j + 1 ],
maxArr[i + 1 ][j]) );
}
}
return maxValue;
}
// Driver code
public static void main (String[] args)
{
int N = 5 ;
int mat[][] = {
{ 1 , 2 , - 1 , - 4 , - 20 },
{ - 8 , - 3 , 4 , 2 , 1 },
{ 3 , 8 , 6 , 1 , 3 },
{ - 4 , - 1 , 1 , 7 , - 6 },
{ 0 , - 4 , 10 , - 5 , 1 }
};
System.out.print( "Maximum Value is " +
findMaxValue(N,mat));
}
}
// Contributed by Prakriti Gupta


Python3

# An efficient method to find maximum value
# of mat[d] - ma[a][b] such that c > a and d > b
import sys
N = 5
# The function returns maximum value
# A(c,d) - A(a,b) over all choices of
# indexes such that both c > a and d > b.
def findMaxValue(mat):
# stores maximum value
maxValue = - sys.maxsize - 1
# maxArr[i][j] stores max of elements
# in matrix from (i, j) to (N-1, N-1)
maxArr = [[ 0 for x in range (N)]
for y in range (N)]
# last element of maxArr will be
# same's as of the input matrix
maxArr[N - 1 ][N - 1 ] = mat[N - 1 ][N - 1 ]
# preprocess last row
maxv = mat[N - 1 ][N - 1 ]; # Initialize max
for j in range (N - 2 , - 1 , - 1 ):
if (mat[N - 1 ][j] > maxv):
maxv = mat[N - 1 ][j]
maxArr[N - 1 ][j] = maxv
# preprocess last column
maxv = mat[N - 1 ][N - 1 ] # Initialize max
for i in range (N - 2 , - 1 , - 1 ):
if (mat[i][N - 1 ] > maxv):
maxv = mat[i][N - 1 ]
maxArr[i][N - 1 ] = maxv
# preprocess rest of the matrix
# from bottom
for i in range (N - 2 , - 1 , - 1 ):
for j in range (N - 2 , - 1 , - 1 ):
# Update maxValue
if (maxArr[i + 1 ][j + 1 ] -
mat[i][j] > maxValue):
maxValue = (maxArr[i + 1 ][j + 1 ] -
mat[i][j])
# set maxArr (i, j)
maxArr[i][j] = max (mat[i][j],
max (maxArr[i][j + 1 ],
maxArr[i + 1 ][j]))
return maxValue
# Driver Code
mat = [[ 1 , 2 , - 1 , - 4 , - 20 ],
[ - 8 , - 3 , 4 , 2 , 1 ],
[ 3 , 8 , 6 , 1 , 3 ],
[ - 4 , - 1 , 1 , 7 , - 6 ] ,
[ 0 , - 4 , 10 , - 5 , 1 ]]
print ( "Maximum Value is" ,
findMaxValue(mat))
# This code is contributed by iAyushRaj


C#

// An efficient method to find
// maximum value of mat1[d]
// - ma[a][b] such that c > a
// and d > b
using System;
class GFG  {
// The function returns
// maximum value A(c,d) - A(a,b)
// over all choices of indexes
// such that both c > a
// and d > b.
static int findMaxValue( int N, int [,]mat)
{
//stores maximum value
int maxValue = int .MinValue;
// maxArr[i][j] stores max
// of elements in matrix
// from (i, j) to (N-1, N-1)
int [,]maxArr = new int [N, N];
// last element of maxArr
// will be same's as of
// the input matrix
maxArr[N - 1, N - 1] = mat[N - 1,N - 1];
// preprocess last row
// Initialize max
int maxv = mat[N - 1, N - 1];
for ( int j = N - 2; j >= 0; j--)
{
if (mat[N - 1, j] > maxv)
maxv = mat[N - 1, j];
maxArr[N - 1, j] = maxv;
}
// preprocess last column
// Initialize max
maxv = mat[N - 1,N - 1];
for ( int i = N - 2; i >= 0; i--)
{
if (mat[i, N - 1] > maxv)
maxv = mat[i,N - 1];
maxArr[i,N - 1] = maxv;
}
// preprocess rest of the
// matrix from bottom
for ( int i = N - 2; i >= 0; i--)
{
for ( int j = N - 2; j >= 0; j--)
{
// Update maxValue
if (maxArr[i + 1,j + 1] -
mat[i, j] > maxValue)
maxValue = maxArr[i + 1,j + 1] -
mat[i, j];
// set maxArr (i, j)
maxArr[i,j] = Math.Max(mat[i, j],
Math.Max(maxArr[i, j + 1],
maxArr[i + 1, j]) );
}
}
return maxValue;
}
// Driver code
public static void Main ()
{
int N = 5;
int [,]mat = {{ 1, 2, -1, -4, -20 },
{ -8, -3, 4, 2, 1 },
{ 3, 8, 6, 1, 3 },
{ -4, -1, 1, 7, -6 },
{ 0, -4, 10, -5, 1 }};
Console.Write( "Maximum Value is " +
findMaxValue(N,mat));
}
}
// This code is contributed by nitin mittal.


PHP

<?php
// An efficient method to find
// maximum value of mat[d] - ma[a][b]
// such that c > a and d > b
$N = 5;
// The function returns maximum
// value A(c,d) - A(a,b) over
// all choices of indexes such
// that both c > a and d > b.
function findMaxValue( $mat )
{
global $N ;
// stores maximum value
$maxValue = PHP_INT_MIN;
// maxArr[i][j] stores max
// of elements in matrix
// from (i, j) to (N-1, N-1)
$maxArr [ $N ][ $N ] = array ();
// last element of maxArr
// will be same's as of
// the input matrix
$maxArr [ $N - 1][ $N - 1] = $mat [ $N - 1][ $N - 1];
// preprocess last row
$maxv = $mat [ $N - 1][ $N - 1]; // Initialize max
for ( $j = $N - 2; $j >= 0; $j --)
{
if ( $mat [ $N - 1][ $j ] > $maxv )
$maxv = $mat [ $N - 1][ $j ];
$maxArr [ $N - 1][ $j ] = $maxv ;
}
// preprocess last column
$maxv = $mat [ $N - 1][ $N - 1]; // Initialize max
for ( $i = $N - 2; $i >= 0; $i --)
{
if ( $mat [ $i ][ $N - 1] > $maxv )
$maxv = $mat [ $i ][ $N - 1];
$maxArr [ $i ][ $N - 1] = $maxv ;
}
// preprocess rest of the
// matrix from bottom
for ( $i = $N - 2; $i >= 0; $i --)
{
for ( $j = $N - 2; $j >= 0; $j --)
{
// Update maxValue
if ( $maxArr [ $i + 1][ $j + 1] -
$mat [ $i ][ $j ] > $maxValue )
$maxValue = $maxArr [ $i + 1][ $j + 1] -
$mat [ $i ][ $j ];
// set maxArr (i, j)
$maxArr [ $i ][ $j ] = max( $mat [ $i ][ $j ],
max( $maxArr [ $i ][ $j + 1],
$maxArr [ $i + 1][ $j ]));
}
}
return $maxValue ;
}
// Driver Code
$mat = array ( array (1, 2, -1, -4, -20),
array (-8, -3, 4, 2, 1),
array (3, 8, 6, 1, 3),
array (-4, -1, 1, 7, -6),
array (0, -4, 10, -5, 1)
);
echo "Maximum Value is " .
findMaxValue( $mat );
// This code is contributed
// by ChitraNayal
?>


Javascript

<script>
// An efficient method to find maximum value of mat1[d]
// - ma[a][b] such that c > a and d > b
// The function returns maximum value A(c,d) - A(a,b)
// over all choices of indexes such that both c > a
// and d > b.
function findMaxValue(N,mat)
{
// stores maximum value
let maxValue = Number.MIN_VALUE;
// maxArr[i][j] stores max of elements in matrix
// from (i, j) to (N-1, N-1)
let maxArr= new Array(N);
for (let i = 0; i < N; i++)
{
maxArr[i]= new Array(N);
}
// last element of maxArr will be same's as of
// the input matrix
maxArr[N - 1][N - 1] = mat[N - 1][N - 1];
// preprocess last row
let maxv = mat[N-1][N-1]; // Initialize max
for (let j = N - 2; j >= 0; j--)
{
if (mat[N - 1][j] > maxv)
maxv = mat[N - 1][j];
maxArr[N - 1][j] = maxv;
}
// preprocess last column
maxv = mat[N - 1][N - 1]; // Initialize max
for (let i = N - 2; i >= 0; i--)
{
if (mat[i][N - 1] > maxv)
maxv = mat[i][N - 1];
maxArr[i][N - 1] = maxv;
}
// preprocess rest of the matrix from bottom
for (let i = N-2; i >= 0; i--)
{
for (let j = N-2; j >= 0; j--)
{
// Update maxValue
if (maxArr[i+1][j+1] - mat[i][j] > maxValue)
maxValue = maxArr[i + 1][j + 1] - mat[i][j];
// set maxArr (i, j)
maxArr[i][j] = Math.max(mat[i][j],
Math.max(maxArr[i][j + 1],
maxArr[i + 1][j]) );
}
}
return maxValue;
}
// Driver code
let N = 5;
let mat = [[ 1, 2, -1, -4, -20 ],
[-8, -3, 4, 2, 1 ],
[ 3, 8, 6, 1, 3 ],
[ -4, -1, 1, 7, -6] ,
[0, -4, 10, -5, 1 ]];
document.write( "Maximum Value is " +
findMaxValue(N,mat));
// This code is contributed by avanitrachhadiya2155
</script>


输出:

Maximum Value is 18

如果允许我们修改矩阵的形式,我们可以避免使用额外的空间,而是使用输入矩阵。 练习: 打印索引(a,b)和(c,d)。 本文由 阿迪蒂亚·戈尔 .如果你喜欢GeekSforgek,并且想贡献自己的力量,你也可以写一篇文章,并将文章邮寄到contribute@geeksforgeeks.org.看到你的文章出现在Geeksforgeks主页上,并帮助其他极客。 如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写评论

© 版权声明
THE END
喜欢就支持一下吧
点赞13 分享