Python中的复数|集1(简介)

Python不仅可以处理实数,还可以使用文件“cmath”处理复数及其相关函数。复数在许多与数学有关的应用程序中都有其用途,python提供了处理和操作复数的有用工具。

null

实数到复数的转换

复数表示为“ x+yi “.Python使用函数将实数x和y转换为复数 复合物(x,y) .使用该功能可以访问真实部分 real() 虚部可以用 imag() .

# Python code to demonstrate the working of
# complex(), real() and imag()
# importing "cmath" for complex number operations
import cmath
# Initializing real numbers
x = 5
y = 3
# converting x and y into complex number
z = complex (x,y);
# printing real and imaginary part of complex number
print ( "The real part of complex number is : " ,end = "")
print (z.real)
print ( "The imaginary part of complex number is : " ,end = "")
print (z.imag)


输出:

The real part of complex number is : 5.0
The imaginary part of complex number is : 3.0

复数相位

从几何学上讲,复数的相位是 正实轴与表示复数的向量之间的角度 .这也被称为 论点 复数的。使用 阶段( ,它以复数为参数。相位范围从 -pi到+pi。 i、 来自 -3.14至+3.14 .

# Python code to demonstrate the working of
# phase()
# importing "cmath" for complex number operations
import cmath
# Initializing real numbers
x = - 1.0
y = 0.0
# converting x and y into complex number
z = complex (x,y);
# printing phase of a complex number using phase()
print ( "The phase of complex number is : " ,end = "")
print (cmath.phase(z))


输出:

The phase of complex number is : 3.141592653589793

从极坐标形式转换为矩形形式,反之亦然

转换为极坐标是使用 极性() ,返回一个 配对(r,ph) 模数r 和阶段 角ph .模数可以使用 abs() 和相位使用 阶段( . 复数通过使用 rect(r,ph) 哪里 r是模量 ph是相角 .它返回一个数值等于 r*(math.cos(ph)+数学。sin(ph)*1j)

# Python code to demonstrate the working of
# polar() and rect()
# importing "cmath" for complex number operations
import cmath
import math
# Initializing real numbers
x = 1.0
y = 1.0
# converting x and y into complex number
z = complex (x,y);
# converting complex number into polar using polar()
w = cmath.polar(z)
# printing modulus and argument of polar complex number
print ( "The modulus and argument of polar complex number is : " ,end = "")
print (w)
# converting complex number into rectangular using rect()
w = cmath.rect( 1.4142135623730951 , 0.7853981633974483 )
# printing rectangular form of complex number
print ( "The rectangular form of complex number is : " ,end = "")
print (w)


输出:

The modulus and argument of polar complex number is : (1.4142135623730951, 0.7853981633974483)
The rectangular form of complex number is : (1.0000000000000002+1j)

Python |集合2中的复数(重要函数和常量)

本文由 曼吉星 .如果你喜欢GeekSforgek,并想贡献自己的力量,你也可以使用 贡献极客。组织 或者把你的文章寄到contribute@geeksforgeeks.org.看到你的文章出现在Geeksforgeks主页上,并帮助其他极客。

如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写下评论。

© 版权声明
THE END
喜欢就支持一下吧
点赞10 分享